Testing of proton exchange composite membranes “polymer film-sulfounded polystyrene” in a direct methanol fuel cell at 60°C. Methanol crossover

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The coefficients of diffusion permeability of methanol through the synthesized composite membranes “polymer film-sulfonated polystyrene” and Nafion-115 membrane were measured. For several composite membranes with significantly different transport properties the diffusion flux of methanol (qdiff) through these membranes was calculated under the conditions of a direct methanol fuel cell (DMFC) at 60°C and 1–2 M concentration of the feed solution. Direct measurements of the crossover current and methanol crossover (qCVA) in DMFC based on these membranes were carried out by using the cyclic voltammetry method (CVA). It has been established that the qCVA values are on average 15% lower than the corresponding qdiff values calculated for each membrane based on its individual parameters (area, thickness, methanol permeability coefficient). The observed ratio qCVA<qdiff is proposed to be explained by the experimentally uncontrolled and, probably, incomplete oxidation of methanol at the cathode. Based on the obtained data, it can be concluded that without monitoring the degree of methanol oxidation at the DMFC cathode, the experimental values of the crossover qCVA can markedly differ from the calculated qdiff and the real values of the methanol crossover in the DMFC. A comparative study of performance of DMFCs based on synthesized composite membranes with significantly different transport properties and Nafion-115 membranes was carried out.It has been established that at 60°C and 1 M concentration of the feed solution, the methanol crossover value has practically no effect on the performance of the cells.

About the authors

D. A. Kritskaya

Branch of Semenov Federal Research Center for Chemical Physics Russian Academy of Sciences

Author for correspondence.
Email: dianakrit@gmail.com
Russian Federation, Chernogolovka, Moscow region, 142432

K. S. Novikova

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Email: dianakrit@gmail.com
Russian Federation, Chernogolovka, Moscow region, 142432

E. A. Sanginov

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Email: dianakrit@gmail.com
Russian Federation, Chernogolovka, Moscow region, 142432

A. N. Ponomarev

Branch of Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: dianakrit@gmail.com
Russian Federation, Chernogolovka, Moscow region, 142432

References

  1. Kraytsberg A., Ein-EliY. // Energ. Fuel. 2014. V. 28. P. 7303.Wang Y., Diaz D.F.R., Chen K.S., Wang Z., Adroher X.C. // Materials Today. 2020. V. 32. P. 178.
  2. Филиппов С.П., Ярославцев А.Б. // Успехи химии. 2021. Т. 90. № 6. C. 627 (англоязычнаяверсия: Filippov S.P., Yaroslavtsev A.B. // Russ. Chem. Rev. 2021. V. 90. № 6. P. 627).
  3. Carrette L., Friedrich K.A., Stimming U. // Fuel Cells. 2001. V. 1. № 1. P. 5.
  4. Aricò A.S., Srinivasan S., Antonucci V. // Fuel Cells. 2001. V. 1, № 2. P. 133.
  5. Alias M.S., Kamarudin S.K., Zainoodin A.M., Masdar M.S. // Int. J. Hydrogen Energ. 2020. V. 45. № 38. P. 19620.
  6. Zhou J., Cao J., Zhang Y., Liu J., Chen J., Li M., Wang W., Liu X. // Renew. Sust. Energ. Rev. 2021. V. 138. AN. 110660.
  7. Mauritz K.A., Moore R.B. // Chem. Rev. 2004. V. 104. P. 4535.
  8. Kusoglu A., Weber A.Z. // Chem. Rev. 2017. V. 117. P. 987.
  9. Deluca N.W., Elabd Y.A. // J. Polym. Sci. Pol. Phys. 2006. V. 44. P. 2201. Shin D.W., Guiver M.D., Lee Y.M. // Chem. Rev. 2017. V. 117. P. 4759.
  10. Byun G.H., Kim J.A., Kim N.Y., Cho Y.S., Park C.R. // Materials Today Energy. 2020. V. 17. AN. 100483.
  11. Nasef M.M., Gürsel S.A., Karabell, D., Güven O. // Progress in Polymer Sci. 2016. V. 63. P. 1.
  12. Nasef M.M. // J. Appl. Membr. Sci. Techn. 2022. V. 26. № 1. P. 51.
  13. Nasef M.M., Zubir N.A., Ismail A.F., Khayet M., Dahlan K.Z.M., Saidi H., Rohani R., Ngah T.I.S., Sulaiman N.A. // J. Membrane Sci. 2006. V. 268. P. 96.
  14. Gürsel S.A., Gubler L., Gupta B., Scherer G.G. // Adv. Polym. Sci. 2008. V. 215. P. 157.
  15. Yamaki T., Sawada S., Asano M., Maekawa Y., Yoshida M., Gubler L., Alkan-Gürsel S., Scherer G.G. // ECS Transactions. 2009. V. 25. P. 1439.
  16. Голубенко Д.В., Юрова П.А., Десятов А.В., Стенина И.А., Косарев С.А., Ярославцев А.Б. // Мембраны и мембранные технологи. 2022. Т. 12. № 6. С. 452 (англоязычная версия: Golubenko D.V., Yurova P.A., Desyatov A.V., Stenina I.A., Kosarev S.A., YaroslavtsevA.B. // Membr. Membr. Technol. 2022. V. 4. № 6. P. 398).
  17. Пономарев А.Н., Абдрашитов Э.Ф., Крицкая Д.А., Бокун В.Ч., Сангинов Е.А., Добровольский Ю.А. // Электрохимия. 2017. Т. 53. № 6. С. 666. (англоязычнаяверсия: PonomarevA.N., AbdrashitovE .F., Kritskaya D.A., Bokun V.C., Sanginov E.A., Dobrovol’skii Y.A. // Russ. J. Electrochem. 2017. V. 53. № 6. P. 589)
  18. Abdrashitov E.F., Bokun V.C., Kritskaya D.A., Sanginov E.A., Ponomarev A.N., Dobrovolsky Y.A. //Solid State Ionics. 2013. V. 251. P. 9.
  19. Abdrashitov E.F., Kritskaya D.A., Bokun V.C., Ponomarev A.N., Novikova K.S., Sanginov E.A., Dobrovolsky Y.A. // Solid State Ionics. 2016. V. 286. P. 135.
  20. Ren X., Springer T.E., Zawodzinski T.A., Gottesfeld S. // J.Electrochem. Soc. 2000. V. 147. P. 466.
  21. Almheiri S., Liu H. // Int. J. Hydrogen Energy. 2015. V. 40. P. 10969.
  22. Génevé T., Turpin C., Régnier J., Rallières O., Verdu O., Rakotondrainibe A., Lombard K. // Fuel Cells. 2017. V. 17. № 2. P. 210.
  23. Braz B.A., Oliveira V.B., Pinto A.M.F.R. // Energy. 2020. V. 208. P. 112394.
  24. Ponomarev A.N., Kritskaya D.A., Abdrashitov E.F., Bokun V.C., Sanginov E.A., Novikova K.S., Dremova N.N., Dobrovolsky Y.A. // J. Appl. Pol. Sci. 2020. V. 137. P. 49563.
  25. Новикова К.С., Абдрашитов Э.Ф., Крицкая Д.А., Пономарев А.Н., Сангинов Е.А., Добровольский Ю.А. // Электрохимия. 2021. Т. 57. № 11. С. 645. (англоязычная версия: Novikova K.S., Abdrashitov E.F., Kritskaya D.A., Ponomarev A.N., Sanginov E.A., Dobrovol’skii Yu.A.// Russ. J.Electrochem.2021. V. 57. № 11. P. 1047)
  26. Wells C.F. // Thermochim. Acta. 1992. V. 200. P. 443.

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies