Supercritical CO2 treatment of mixed matrix membranes based on polyimides for improvement of their gas transport properties

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Mixed matrix membranes (MMMs) were prepared by introduction of metal-organic frameworks ZIF-8 and ZIF-67 in concentration up to 20% w/w in chloroform solution intopolyimides synthesized of diethyltoluenediamine (DETDA) isomers mixture and biphenyl-tetracarboxylic acid dianhydride (BPDA)or hexafluoroisopropylidenediphthalic anhydride (6FDA). The initial polyimides were synthesized by single-stage high-temperature catalytic polycondensation in benzoic acid melt. The studied MMMs weretreated by supercritical CO2 with subsequent decompression. The gas transport and gas selective properties of the initial and exposed to sc-CO2 membranes have been studied. Experimental values of the effective gas permeability and diffusion coefficients of He, H2, O2, N2, CO2, CH4 were obtained, and the effective solubility coefficients of these gases were calculated. It was found that the sc-CO2 treatment of the studied MMMs can significantly increase the level of gas permeability of the membranes, while the effect achieved depends on the gas, the nature of the matrix and the concentration of the introduced particles with the selectivity of gases at the level of the initial ones. It has been established that the treatment effect persists over time with a slight decrease in the permeability of gases, which at the same time remains at a level significantly higher than the initial permeability.

The demonstrated effect of improving gas transport properties when treating MMMs based on polyimide matrices 6FDA-DETDA and BPDA-DETDA in sc-CO2 can be used for further application of the proposed modification method in order to increase gas transport through MMMs based on other polymers, including highly permeable ones.

About the authors

D. A. Syrtsova

A.V. Topchiev Institute of Petrochemical Synthesis of the Russian Academy of Sciences

Email: alentiev@ips.ac.ru
Russian Federation, Leninsky prospect, 29, Moscow, 119991

A. Yu. Alentiev

A.V. Topchiev Institute of Petrochemical Synthesis of the Russian Academy of Sciences

Author for correspondence.
Email: alentiev@ips.ac.ru
Russian Federation, Leninsky prospect, 29, Moscow, 119991

A. Yu. Nikolaev

A.N. Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences

Email: alentiev@ips.ac.ru
Russian Federation, Vavilova str., 28, Moscow, 119991

D. A. Kletnov

A.N. Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences

Email: alentiev@ips.ac.ru
Russian Federation, Vavilova str., 28, Moscow, 119991

D. A. Chistyakova

N.S. Enikolopov Institute of Synthetic Polymeric Materials of the Russian Academy of Sciences

Email: alentiev@ips.ac.ru
Russian Federation, Profsoyuznaya str., 70, Moscow, 117393

R. Yu. Nikiforov

A.V. Topchiev Institute of Petrochemical Synthesis of the Russian Academy of Sciences

Email: alentiev@ips.ac.ru
Russian Federation, Leninsky prospect, 29, Moscow, 119991

V. E. Ryzhikh

A.V. Topchiev Institute of Petrochemical Synthesis of the Russian Academy of Sciences

Email: alentiev@ips.ac.ru
Russian Federation, Leninsky prospect, 29, Moscow, 119991

N. A. Belov

A.V. Topchiev Institute of Petrochemical Synthesis of the Russian Academy of Sciences

Email: alentiev@ips.ac.ru
Russian Federation, Leninsky prospect, 29, Moscow, 119991

R. Sabouri

Istanbul Technical University

Email: alentiev@ips.ac.ru
Turkey, 34469 Maslak – İstanbul, ITU Ayazağa Campus

M. Demirci

Istanbul Technical University

Email: alentiev@ips.ac.ru
Turkey, 34469 Maslak – İstanbul, ITU Ayazağa Campus

C. Yildirim

Istanbul Technical University

Email: alentiev@ips.ac.ru
Turkey, 34469 Maslak – İstanbul, ITU Ayazağa Campus

S. B. Tantekin-Ersolmaz

Istanbul Technical University

Email: alentiev@ips.ac.ru
Turkey, 34469 Maslak – İstanbul, ITU Ayazağa Campus

References

  1. AlentievA. Y., RyzhikhV. E., SyrtsovaD. A., Belov N.A. // Uspekhikhimii 2023. V. 92. № 6. P. RCR5083.
  2. Tressaud A., Durand E., Labrugère C., Kharitonov A.P., Kharitonova L.N. // Journal of Fluorine Chemistry 2007. V. 128. № 4. P. 378–391.
  3. Peyroux J., Dubois M., Tomasella E., Batisse N., Kharitonov A. P., Flahaut D., Romana L., Thomas P. // Surface and Coatings Technology 2016. V. 292. P. 144–154.
  4. Ma X., Li K., Zhu Z., Dong H., Lv J., Wang Y., Pinnau I., Li J., Chen B., Han Y. // J. Mater. Chem. A 2021. V. 9. № 34. P. 18313–18322.
  5. Fourche G. // Polym. Eng. Sci. 1995. V. 35. № 12. P. 968–975.
  6. Fatyeyeva K., Dahi A., Chappey C., Langevin D., Valleton J.-M., Poncin-Epaillard F., Marais S. // RSC Adv. 2014. V. 4. № 59. P. 31036–31046.
  7. Al-Jumaili A., Alancherry S., Grant D., Kumar A., Bazaka K., Jacob M. V. // Plasma Treatment of Polymeric Membranes. In Non-Thermal Plasma Technology for Polymeric Materials; Elsevier, 2019. P. 211–240.
  8. Borisov S. // Journal of Membrane Science 1997. V. 125. № 2. P. 319–329.
  9. Kim S., Lee Y. M. // Progress in Polymer Science 2015. V. 43. P. 1–32.
  10. Lee W. H., Seong J. G., Hu X., Lee Y. M. // Journal of Polymer Science 2020. V. 58. № 18. P. 2450–2466.
  11. Hu X., Lee W. H., Bae J. Y., Kim J. S., Jung J. T., Wang H. H., Park H. J., Lee Y. M. // Journal of Membrane Science 2020. V. 612. P. 118437.
  12. Dong S., Wang Z., Sheng M., Qiao Z., Wang J. // Journal of Membrane Science 2020. V. 610. P. 118221.
  13. Yave W., Peinemann K.-V., Shishatskiy S., Khotimskiy V., Chirkova M., Matson S., Litvinova E., Lecerf N. // Macromolecules 2007. V. 40. № 25. P. 8991–8998.
  14. Shishatskiy S., Makrushin V., Levin I., Merten P., Matson S., Khotimskiy V. // Polymers 2022. V. 14. № 3. P. 462.
  15. Olivieri L., Meneguzzo S., Ligi S., Saccani A., Giorgini L., Orsini A., Pettinau A., De Angelis M. G. // Journal of Membrane Science 2018. V. 555. P. 258–267.
  16. Golubev G., Bakhtin D., Makaev S., Borisov I., Volkov A. // Polymers 2021. V. 13. № 12. P. 1922.
  17. Furukawa H., Cordova K.E., O’Keeffe M., Yaghi O.M. // Science 2013. V. 341. № 6149. P. 1230444.
  18. Galizia M., Chi W.S., Smith Z.P., Merkel T.C., Baker R.W., Freeman B. D. // Macromolecules 2017. V. 50. № 20. P. 7809–7843.
  19. Gawali A., Gawali S., Jampa S. S., Sinha M. K., Pandya J., Shinde S., Khuntia S. // AQUA — Water Infrastructure, Ecosystems and Society 2023. P. jws2023102.
  20. Sorribas S., Zornoza B., Téllez C., Coronas J. // Procedia Engineering 2012. V. 44. P. 136–139.
  21. Díaz K., Garrido L., López-González M., Del Castillo L.F., Riande E. // Macromolecules 2010. V. 43. № 1. P. 316–325.
  22. Bushell A. F., Attfield M. P., Mason C. R., Budd P.M., Yampolskii Y., Starannikova L., Rebrov A., Bazzarelli F., Bernardo P., Carolus Jansen J., Lanč M., Friess K., Shantarovich V., Gustov V., Isaeva V. // Journal of Membrane Science 2013. V. 427. P. 48–62.
  23. Alkandari S.H., Lightfoot J., Castro-Dominguez B. // RSC Adv. 2023. V. 13. № 21. P. 14198–14209.
  24. Moral G., Ortiz A., Gorri D., Ortiz I. // International Journal of Hydrogen Energy 2023. P. S0360319923015355.
  25. Ordoñez Ma. J.C., Balkus K.J., Ferraris J.P., Musselman I.H. // Journal of Membrane Science 2010. V. 361. № 1–2. P. 28–37.
  26. Song Q., Nataraj S.K., Roussenova M.V., Tan J.C., Hughes D.J., Li W., Bourgoin P., Alam M.A., Cheetham A.K., Al-Muhtaseb S.A., Sivaniah E. // Energy Environ. Sci. 2012. V. 5. № 8. P. 8359.
  27. Nafisi V., Hägg M.-B. // Separation and Purification Technology 2014. V. 128. P. 31–38.
  28. Dai Y., Johnson J. R., Karvan O., Sholl D.S., Koros W.J. // Journal of Membrane Science 2012. V. 401–402. P. 76–82.
  29. Budd P., McKeown N., Ghanem B., Msayib K., Fritsch D., Starannikova L., Belov N., Sanfirova O., Yampolskii Y., Shantarovich V. // Journal of Membrane Science 2008. V. 325. №2 P. 851–860.
  30. Ahmad M.Z., Izak P., Fila V. // Journal of Environmental Chemical Engineering 2022. V. 10. № 6. P. 108611.
  31. Basu S., Cano-Odena A., Vankelecom I. F. J. // Separation and Purification Technology 2011. V. 81. № 1. P. 31–40.
  32. Kratochvil A.M., Damle-Mogri S., Koros W.J. // Macromolecules 2009. V. 42. № 15. P. 5670–5675.
  33. Scholes C., Kanehashi S. // Membranes 2019. V. 9. № 3. P. 41.
  34. Sanders D.F., Smith Z.P., Guo R., Robeson L.M., McGrath J.E., Paul D.R., Freeman B.D. // Polymer 2013. V. 54. № 18. P. 4729–4761.
  35. Scholes C.A., Kanehashi S. // Journal of Membrane Science 2018. V. 566. P. 239–248.
  36. Belov N.A., Alentiev A. Yu., Ronova I.A., Sinitsyna O.V., Nikolaev A. Yu., Zharov A.A. // J. Appl. Polym. Sci. 2016. V. 133. № 14. P. 43105.
  37. Shantarovich V.P., Bekeshev V.G., Belov N.A., Ronova I.A., Nikolaev A.Yu., Gustov V.W., Kevdina I.B., Filimonov M.K. // High Energy Chem 2016. V. 50. № 4. P. 287–291.
  38. Ronova I.A., Belov N.A., Alentiev A.Yu., Nikolaev A.Yu., Chirkov S.V. // Struct Chem 2018. V. 29. № 2. P. 457–466.
  39. Алентьев А.Ю., Чирков С.В., Никифоров Р. Ю., Белов Н. А., Орлова А. М., Кузнецов А. А., Кечекьян А. С., Кечекьян П.А. // Мембраны и Мембранные технологии. V. 12. № 3. P. .
  40. Ronova I. A., Alentiev A. Y., Chisca S., Sava I., Bruma M., Nikolaev A. Y., Belov N. A., Buzin M. I. // Struct Chem 2014. P. ??
  41. Alentiev A.Yu., Belov N.A., Chirkov S.V., Yampolskii Yu.P. // Journal of Membrane Science 2018. V. 547. P. 99–109.
  42. Starannikova L.E., Alentiev A.Yu., Nikiforov R.Yu., Ponomarev I.I., Blagodatskikh I.V., Nikolaev A.Yu., Shantarovich V.P., Yampolskii Yu.P. // Polymer 2021. V. 212. P. 123271.
  43. Kuznetsov A.A., Tsegelskaya A.Y., Orlova A.M., Belov N.A., Chirkov S.V., Nikiforov R.Y., Alentiev A.Y. // Membranes and Membrane Technologies 2019. V. 1. № 5. P. 316–322.
  44. Pan Y., Liu Y., Zeng G., Zhao L., Lai Z. // Chem. Commun. 2011. V. 47. № 7. P. 2071.
  45. Xia W., Zhu J., Guo W., An L., Xia D., Zou R. // J. Mater. Chem. A 2014. V. 2. № 30. P. 11606–11613.
  46. Dlamini D. S., Li J., Mamba B. B. // Applied Clay Science 2019. V. 168. P. 21–30.
  47. Archana K., Pillai N. G., Rhee K. Y., Asif A. // Composites Part B: Engineering 2019. V. 158. P. 384–389.
  48. Mor J., Utpalla P., Bahadur J., Sen D., Sharma S.K. // Microporous and Mesoporous Materials 2023. V. 348. P. 112389.
  49. Phan A., Doonan C.J., Uribe-Romo F.J., Knobler C.B., O’Keeffe M., Yaghi O. M. // Acc. Chem. Res. 2010. V. 43. № 1. P. 58–67.
  50. Makrushin V., Kossov A., Polevaya V., Levin I., Bezgin D., Syrtsova D., Matson S. // Polymers 2023. V. 15. № 9. P. 2172.
  51. Syrtsova D., Piskarev M., Zinoviev A., Кuznetsov A., Skryleva E., Gilman A., Теplyakov V. // J of Applied Polymer Sci 2022. V. 139. № 41. P. e52821.
  52. Wang Z., Luo Y., Zheng F., Zhang N., Yin C., Li J., He C., Peng X., Huang Z., Fang P. // Surface & Interface Analysis 2018. V. 50. № 8. P. 819–826.
  53. Sridhar S., Veerapur R.S., Patil M.B., Gudasi K.B., Aminabhavi T.M. // J. Appl. Polym. Sci. 2007. V. 106. № 3. P. 1585–1594.
  54. Donohue M.D., Minhas B.S., Lee S.Y. // Journal of Membrane Science 1989. V. 42. № 3. P. 197–214.
  55. Yeom C.K., Lee S.H., Lee J.M. // J. Appl. Polym. Sci. 2000. V. 78. № 1. P. 179–189.
  56. Falbo F., Tasselli F., Brunetti A., Drioli E., Barbieri G. // Braz. J. Chem. Eng. 2014. V. 31. № 4. P. 1023–1034.

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies