Neutralization Dialysis of Phenylalanine and Mineral Salt Mixed Solution: Effect of Concentration and Flow Rate of Acid and Alkali Solutions

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Amino acids that are ampholytes can be effectively separated and purified by the method of neutralization dialysis (ND), whose advantage is the ability to control the pH value of the solution without adding reagents. An important task is to optimize the parameters of the ND process to ensure minimal losses of amino acids during their isolation from mixed solutions. An experimental study of the process of demineralization of the phenylalanine and sodium chloride equimolar mixture by the ND method was carried out. It is established that varying the concentration and flow rate of acid and alkali solutions in the corresponding compartments of the dialysis cell allows for regulating the pH value of the solution being desalted and controlling the amount of amino acid loss. Halving the acid concentration (from 0.10 to 0.05 M) allowed reducing the losses of phenylalanine from 18.3 to 16.4%, and using a lower solution flow rate in the acid compartment (0.75 instead of 1.50 cm s–1) made it possible to reduce these losses to 14.2%. At the same time, in all experiments, the electrical conductivity of the desalted solution decreased by 90%, which suggests a high degree of demineralization and the effectiveness of the method used to isolate phenylalanine from the mixed solution.

About the authors

M. V. Porozhnyy

Kuban State University

Author for correspondence.
Email: porozhnyj@mail.ru
Russia, 350040, Krasnodar

V. V. Gil

Kuban State University

Email: porozhnyj@mail.ru
Russia, 350040, Krasnodar

A. E. Kozmai

Kuban State University

Email: porozhnyj@mail.ru
Russia, 350040, Krasnodar

References

  1. D’Este M., Alvarado-Morales M., Angelidaki I. // Biotechnol. Adv. 2018. V. 36. № 1. P. 14–25.
  2. Ikeda M. Amino acid production processes. In: Microbial production of l-amino acids. Springer, Berlin, Heidelberg, 2002.
  3. Alia K.B., Nadeem H., Rasul I., Azeem F., Hussain S., Siddique M.H., Muzammil S., Riaz M., Nasir S. Separation and purification of amino acids. In: Applications of ion exchange materials in biomedical industries. Springer, Cham, 2019.
  4. Zadmard R., Tabar-Heydar K., Imani M. // J. Chromatogr. Sci. 2015. V. 53. № 5. P. 702–707.
  5. Kupnik K., Knez Ž., Primožič M., Leitgeb M. // Sep. Purif. Rev. 2022. V. 52. № 1. P. 58–74.
  6. Chiu T.-C. // Anal. Bioanal. Chem. 2013. V. 405. № 25. P. 7919–7930.
  7. Giuffrida A., Maccarrone G., Cucinotta V., Orlandini S., Contino A. // J. Chromatogr. A. 2014. V. 1363. P. 41–50.
  8. Vyas B.B., Ray P. // Desalination. 2015. V. 362. P. 104–116.
  9. Ecker J., Raab T., Harasek M. // J. Membr. Sci. 2012. V. 389. P. 389–398.
  10. Timmer J.M.K., Speelmans M.P.J., van der Horst H.C. // Sep. Purif. Technol. 1998. V. 14. № 1–3. P. 133–144.
  11. Wang G., Zhang C., Sun M., Zhang X., Wu C., Wu Y. // Sep. Purif. Technol. 2017. V. 188. P. 539–547.
  12. Eliseeva T., Kharina A. // Membranes. 2022. V. 12. № 7. Art. № 665.
  13. Sato K. // J. Membr. Sci. 2008. V. 309. P. 175–181.
  14. Takai N., Yamabe T., Seno M. // The Journal of the Society of Chemical Industry, Japan. 1964. V. 67. № 6. P. 893–895.
  15. Kikuchi K., Gotoh T., Takahashi H., Higashino S., Dranoff J.S. // J. Chem. Eng. Jpn. 1995. V. 28. P. 103–109.
  16. Kumar M., Tripathi B.P., Shahi V.K.J. // Chem. Technol. Biotech. 2010. V. 85. P. 648–657.
  17. Nikonenko V.V., Pismenskaya N.D., Belova E.I., Sistat Ph., Huguet P., Pourcelly G., Larchet Ch. // Adv. Colloid Interface Sci. 2010. V. 160. P. 101–123.
  18. Lin X., Pan J., Zhou M., Xu Y., Lin J., Shen J., Gao C., van der Bruggen B. // Ind. Eng. Chem. Res. 2016. V. 55. № 10. P. 2813–2820.
  19. Merkel A., Ashrafi A.M., Ečer J. // J. Membr. Sci. 2018. V. 555. P. 185–196.
  20. Shaposhnik V.A., Eliseeva T.V. // J. Membr. Sci. 1999. V. 161. № 1–2. P. 223–228.
  21. Igawa M., Echizenya K., Hayashita T., Seno M. // Bull. Chem. Soc. Jpn. 1987. V. 60. P. 381–383.
  22. Kozmai A., Chérif M., Dammak L., Bdiri M., Larchet C., Nikonenko V. // J. Membr. Sci. 2017. V. 540. P. 60–70.
  23. Chérif M., Mkacher I., Dammak L., Ben Salah A., Walha K., Grande D., Nikonenko V. // Desalination. 2015. V. 361. P. 13–24.
  24. Chérif M., Mkacher I., Dammak L., Ben Salah A., Walha K., Nikonenko V., Korchane S., Grande D. // Desalination and Water Treatment. 2016. V. 57. № 31. P. 14 403–14 413.
  25. Sato K., Yonemoto T., Tadaki T. // J. Chem. Eng. Jpn. 1993. V. 26. № 1. P. 68–74.
  26. Igawa M., Tanabe H., Ida T., Yamamoto F., Okochi H. // Chemistry Letters. 1993. V. 22. P. 1591–1594.
  27. Bleha M., Tishchenko G.A. // J. Membr. Sci. 1992. V. 73. P. 305–311.
  28. Kozmai A., Goleva E., Vasil’eva V., Nikonenko V., Pismenskaya N. // Membranes. 2019. V. 9. Art. № 171.
  29. Сауд А.М., Васильева В.И., Голева Е.А., Акберова Э.М., Козлов А.Т. // Сорбционные и хроматографические процессы. 2020. Т. 20. № 6. С. 749–759.
  30. Васильева В.И., Сауд А.М., Акберова Э.М. // Мембраны и мембранные технологии. 2021. Т. 11. № 2. С. 110–118. [Vasil’eva V.I., Saud A.M., Akberova E.M. // Membranes and Membrane Technologies. 2021. V. 3. № 2. P. 98–106.]
  31. Порожный М.В., Козмай А.Э., Мареев А.А., Гиль В.В. // Мембраны и мембранные технологии. 2022. Т. 12. № 5. С. 351–364. [Porozhnyy M.V., Kozmai A.E., Mareev A.A., Gil V.V. // Membranes and Membrane Technologies. 2022. V. 4. № 5. P. 306–318.]
  32. Durán A., Monteagudo J.M., Sanmartín I., Gómez P. // Ultrason. Sonochem. 2013. V. 20. P. 785–791.
  33. Lide D.R. Handbook of Chemistry and Physics. Boca Raton, FL: CRC Press, 2005.
  34. Васильева В.И., Сауд А.М. // Аналитика и контроль. 2022. Т. 26. № 3. С. 222–234.
  35. Chen G.Q., Wei K., Hassanvand A., Freeman B.D., Kentish S.E. // Water Research. 2020. V. 175. Art. № 115 681.
  36. Robinson R.A., Stokes R.H. Electrolyte solutions. 2nd Revised ed. NY: Dover Publications Inc., 2003. 588 p.
  37. Denisov G.A., Tishchenko G., Bleha M., Shataeva L. // J. Membr. Sci. 1995. V. 98. P. 13–25.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (505KB)
3.

Download (82KB)
4.

Download (234KB)
5.

Download (24KB)
6.

Download (246KB)

Copyright (c) 2023 М.В. Порожный, В.В. Гиль, А.Э. Козмай

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies