Fundamental representations of orthogonal Lie algebra and new simple subalgebras of nonalternating Hamiltonian Lie algebras
- Authors: Kondrateva A.V.1, Kuznetsov M.I.1
-
Affiliations:
- National Research Lobachevsky State University
- Issue: Vol 27, No 1 (2025)
- Pages: 25-33
- Section: Mathematics
- Submitted: 27.06.2025
- Accepted: 30.06.2025
- Published: 26.02.2025
- URL: https://journals.rcsi.science/2079-6900/article/view/298075
- ID: 298075
Cite item
Full Text
Abstract
About the authors
Alisa V. Kondrateva
National Research Lobachevsky State University
Author for correspondence.
Email: alisakondr@mail.ru
ORCID iD: 0009-0006-7722-870X
Assistant at the Departments of Algebra, Geometry and Discrete Mathematics, National Research Lobachevsky State University
Russian Federation, 23 Gagarin Ave., Nizhny Novgorod, 603022, RussiaMichael I. Kuznetsov
National Research Lobachevsky State University
Email: kuznets-1349@yandex.ru
ORCID iD: 0000-0001-9231-301X
References
- N. Bourbaki, Groupes et algebres de Lie. Ch. VII, VIII, Hermann, Paris, 1975.
- V.W. Guillemin, S. Sternberg, "An algebraic model of transitive differential geometry",
- Bull. AMS, 10:1 (1964), 16–47, 342 p.
- A. V. Kondrateva, M. I. Kuznetsov, "Filtered deformations of graded non-alternating Hamiltonian Lie algebras", Russian Mathematics (Iz. VUZ), 68:9 (2024), 86–90. doi: 10.26907/0021-3446-2024-9-100-105.
- A. V. Kondrateva, M. I. Kuznetsov, "Nonalternating Hamiltonian Forms over a Divided Power Algebra of Characteristic 2", Russian Mathematics (Iz. VUZ), 67:6 (2023), 82–87. doi: 10.26907/0021-3446-2023-6-95-100.
- A. V. Kondrateva, "Non-alternating Hamiltonian Lie algebras of Characteristic Two in three variables", Lobachevskii Journal of Mathematics, 42:12 (2021), 2841–2853. doi: 10.1134/S1995080221120209.
- L. Lin, "Non-alternating Hamiltonian algebra P(n, m) of characteristic two", Communications in Algebra, 21:2 (1993), 399–411.
- A. V. Kondrateva, M. I. Kuznetsov, "On an embedding theorem for filtered deformations of graded nonalternating Hamiltonian Lie algebras", Zhurnal SVMO, 26:4 (2024), 392–403. doi: 10.15507/2079-6900.26.202404.392-403 (In Russ.).
- H. Strade, Simple Lie algebras over fields of positive characteristic. I: Structure theory, de Gruyter Expositions in Math., Berlin, 2004 doi: 10.1515/9783110197945, 540 p.
- G. Brown, "Families of simple Lie algebras of characteristic two", Comm. Algebra, 23 (1995), 941–954. doi: 10.1080/00927879508825259.
- I. Kaplansky, "Some simple Lie algebras of characteristic 2", Lecture Notes in Math., 993 (1982), 127–129.
- S. M. Skryabin, "Toral rank one simple Lie algebras of low characteristics", J. Algebra, 200:2 (1998), 650–700.
- M. Vaughan-Lee, "Simple Lie algebras of low dimension over GF(2)", London Math. Soc. J. Comput. Math., 9 (2006), 174–192. doi: 10.1112/S1461157000001248.
- B. Eick, "Some new simple Lie algebras in characteristic 2", J. Symbolic Comput., 45:9 (2010), 943–951. doi: 10.1007/BFb0093357.
- B. Eick, T. Moede, "Computing subalgebras and ℤ₂-gradings of simple Lie algebras
- over finite fields", Commun. Math., 30:2 (2022), 37–50. doi: 10.46298/cm.10193.
- D. Cushing, G.W. Stagg, D. I. Stewart, "A Prolog assisted search for new simple Lie
- algebras", Math. Comp., 93 (2022), 1473–1495. doi: 10.48550/arXiv.2207.01094.
Supplementary files



