Fundamental representations of orthogonal Lie algebra and new simple subalgebras of nonalternating Hamiltonian Lie algebras

Cover Page

Cite item

Full Text

Abstract

In the paper the action of the orthogonal Lie algebra $\mathfrak{o}(V)$ on the exterior powers of a space $V$ is considered for $n$-dimensional vector space $V$ over a perfect field $K$ of characteristic two with a given nondegenerate orthogonal. The exterior algebra is identified with the algebra of truncated polynomials in $n$ variables. The exterior powers of $V$ taken as modules over $\mathfrak{o}(V)$ are identified with homogeneous subspaces of non-alternating Hamiltonian Lie algebra $P(n)$ with respect to the Poisson bracket corresponding to an orthonormal basis of the space $V$ of variables. It is proved that the exterior powers of the standard representation for Lie algebra $\mathfrak{o}(V)$ are irreducible and pairwise nonequivalent. With respect to subalgebra $so(V)$, $n= 2l+1$ or $n= 2l$, there exist $l$ pairwise nonequivalent fundamental representations in the spaces $\Lambda^{r}V$, $r= 1, \ldots, l$. All of them admit a nondegenerate invariant orthogonal form, being irreducible when $n= 2l+1$. When $n= 2l$ the representations of $so(V)$ in $\Lambda^{r}V$, $r= 1, \ldots, l-1$ are irreducible and the space $\Lambda^{l}V$ possesses the only non-trivial proper invariant subspace $M$, which is a maximal isotropic subspace with respect to an invariant form. Two exceptional simple Lie subalgebras $P_{1}(6)$, $P_{2}(6)$ of $P(n)$, of dimension $2^{5}-1$ and $2^{6}-1$, correspondingly, containing the submodule $M$, and exising only in the case of 6 variables, are found.
 

About the authors

Alisa V. Kondrateva

National Research Lobachevsky State University

Author for correspondence.
Email: alisakondr@mail.ru
ORCID iD: 0009-0006-7722-870X

Assistant at the Departments of Algebra, Geometry and Discrete Mathematics, National Research Lobachevsky State University 

Russian Federation, 23 Gagarin Ave., Nizhny Novgorod, 603022, Russia

Michael I. Kuznetsov

National Research Lobachevsky State University

Email: kuznets-1349@yandex.ru
ORCID iD: 0000-0001-9231-301X

D.Sc. in Phys. and Math., Professor of the Departments of Algebra, Geometry and Discrete Mathematics
Russian Federation, 23 Gagarin Ave., Nizhny Novgorod, 603022, Russia

References

  1. N. Bourbaki, Groupes et algebres de Lie. Ch. VII, VIII, Hermann, Paris, 1975.
  2. V.W. Guillemin, S. Sternberg, "An algebraic model of transitive differential geometry",
  3. Bull. AMS, 10:1 (1964), 16–47, 342 p.
  4. A. V. Kondrateva, M. I. Kuznetsov, "Filtered deformations of graded non-alternating Hamiltonian Lie algebras", Russian Mathematics (Iz. VUZ), 68:9 (2024), 86–90. doi: 10.26907/0021-3446-2024-9-100-105.
  5. A. V. Kondrateva, M. I. Kuznetsov, "Nonalternating Hamiltonian Forms over a Divided Power Algebra of Characteristic 2", Russian Mathematics (Iz. VUZ), 67:6 (2023), 82–87. doi: 10.26907/0021-3446-2023-6-95-100.
  6. A. V. Kondrateva, "Non-alternating Hamiltonian Lie algebras of Characteristic Two in three variables", Lobachevskii Journal of Mathematics, 42:12 (2021), 2841–2853. doi: 10.1134/S1995080221120209.
  7. L. Lin, "Non-alternating Hamiltonian algebra P(n, m) of characteristic two", Communications in Algebra, 21:2 (1993), 399–411.
  8. A. V. Kondrateva, M. I. Kuznetsov, "On an embedding theorem for filtered deformations of graded nonalternating Hamiltonian Lie algebras", Zhurnal SVMO, 26:4 (2024), 392–403. doi: 10.15507/2079-6900.26.202404.392-403 (In Russ.).
  9. H. Strade, Simple Lie algebras over fields of positive characteristic. I: Structure theory, de Gruyter Expositions in Math., Berlin, 2004 doi: 10.1515/9783110197945, 540 p.
  10. G. Brown, "Families of simple Lie algebras of characteristic two", Comm. Algebra, 23 (1995), 941–954. doi: 10.1080/00927879508825259.
  11. I. Kaplansky, "Some simple Lie algebras of characteristic 2", Lecture Notes in Math., 993 (1982), 127–129.
  12. S. M. Skryabin, "Toral rank one simple Lie algebras of low characteristics", J. Algebra, 200:2 (1998), 650–700.
  13. M. Vaughan-Lee, "Simple Lie algebras of low dimension over GF(2)", London Math. Soc. J. Comput. Math., 9 (2006), 174–192. doi: 10.1112/S1461157000001248.
  14. B. Eick, "Some new simple Lie algebras in characteristic 2", J. Symbolic Comput., 45:9 (2010), 943–951. doi: 10.1007/BFb0093357.
  15. B. Eick, T. Moede, "Computing subalgebras and ℤ₂-gradings of simple Lie algebras
  16. over finite fields", Commun. Math., 30:2 (2022), 37–50. doi: 10.46298/cm.10193.
  17. D. Cushing, G.W. Stagg, D. I. Stewart, "A Prolog assisted search for new simple Lie
  18. algebras", Math. Comp., 93 (2022), 1473–1495. doi: 10.48550/arXiv.2207.01094.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Kondrateva A.V., Kuznetsov M.I.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

We use cookies and Yandex.Metrica to improve the Site and for good user experience. By continuing to use this Site, you confirm that you have been informed about this and agree to our personal data processing rules.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).