Numerical solution of a singularly perturbed boundary value problem of supersonic flow transformed to the modified best argument

Cover Page

Cite item

Full Text

Abstract

When solving problems of aerodynamics, researchers often need to numerically solve singularly perturbed boundary value problems. In some cases, the problem can be reduced to solving a boundary value problem for an ordinary differential equation. Then it is possible to apply various numerical methods such as the grid method, the shooting method, as well as a number of projection methods, which, in turn, can form the basis of the finite element method. The grid method requires solving a system of algebraic equations, that are often nonlinear, which leads to an increase in the calculation time and to the difficulties in convergence of the approximate solution. According to the shooting method, the solution of  boundary value problem is reduced to solving a certain set of Cauchy problems. When solving stiff Cauchy problems, implicit schemes are used as a rule, but in this case the same difficulties arise as for the grid method. The transformation of the problem to the best argument $\lambda$, calculated  tangentially along the integral curve, makes it possible to increase the efficiency of explicit numerical methods. However, in cases where the growth rate of integral curves is close to exponential, the transformation to the best argument is not efficient enough. Then the best argument is modified in such a way as to smooth out this flaw. This paper investigates the application of modified best argument to the solution of the boundary value problem of an aerodynamic flow movement in case when the gas is injected at supersonic speed into a channel of variable cross-section.

About the authors

Ekaterina D. Tsapko

Moscow Aviation Institute

Author for correspondence.
Email: zapkokaty@gmail.com
ORCID iD: 0000-0002-4215-3510

Postgraduate Student, Department of Mechatronics and Theoretical mechanics

Russian Federation, 4 Volokolamskoe Av., Moscow 125993, Russia

References

  1. A. N. Tikhonov, “[On the dependence of the solutions of differential equations on a small parameter]”, Mat. Sb., 22:2 (1948), 193–204 (In Russ.), http://mi.mathnet.ru/msb6075.
  2. A. N. Tikhonov, “[On systems of differential equations containing parameters]”, Mat. Sb., 27:1 (1950), 147–156 (In Russ.), http://mi.mathnet.ru/msb5907.
  3. A. N. Tikhonov, “[Systems of differential equations containing small parameters in the derivatives]”, Mat. Sb., 31:3 (1952), 575–583 (In Russ.), http://mi.mathnet.ru/msb5548.
  4. V. F. Butuzov, [Asymptotic methods in singularly perturbed problems], YarGU, Yaroslavl, 2014 (In Russ.), 140 p.
  5. A. B. Vasil’eva, V. F. Butuzov, [Asymptotic expansions of solutions of singularly perturbed equations], Nauka Publ., Moscow, 1973 (In Russ.), 272 p.
  6. A. B. Vasil’eva, V. F. Butuzov, [Asymptotic methods in the theory of singular perturbations], Visshay shkola Publ., Moscow, 1990 (In Russ.), 208 p.
  7. A. B. Vasil’eva, A. A. Pochinka, [Asymptotic theory of singularly perturbed problems], MSU Publ., Moscow, 2008 (In Russ.), 398 p.
  8. A. B. Vasil’eva, V. F. Butuzov, N. N. Nefedov, “Contrast structures in singularly perturbed problems”, Fundam. Prikl. Mat., 4:3 (1998), 799–851 (In Russ), http://mi.mathnet.ru/eng/fpm/v4/i3/p799.
  9. V. F. Butuzov, A. B. Vasil’eva, N. N. Nefedov, “Asymptotic Theory of Contrasting Structures. A Survey”, Autom. Remote Control, 58:7 (1997), 1068–1091 (In Russ).
  10. S. A. Lomov, I. S. Lomov, Fundamentals of the mathematical theory of a boundary layer, Moscow University Press, Moscow, 2011 (In Russ), 456 p.
  11. S. A. Lomov, Introduction to the general theory of singular perturbations, American Mathematical Society, Providence, R.I., 1992 (In Russ), 375 p.
  12. V. I. Shalashilin, E. B. Kuznetsov, Parametric continuation and optimal parametrization in applied mathematics and mechanics, Kluwer Academic Publ., Dordrecht, Boston, London, 2003, 236 p.
  13. E. B. Kuznetsov, S. S. Leonov, E. D. Tsapko, “The parametrization of the cauchy problem for nonlinear differential equations with contrast structures”, Mordovia University Bulletin, 28:4 (2018), 486–510. DOI: https://doi.org/10.15507/0236-2910.028.201804.486-510
  14. E. B. Kuznetsov, S. S. Leonov, D. A. Tarkhov, E. D. Tsapko, A. A. Babintseva, “Arc length and multilayer methods for solving initial value problems for differential equations with contrast structures”, Modern Information Technology and IT Education. 13th International Conference, SITITO 2018. Vol. 1201 (Moscow, Russia, November 29 – December 2, 2018), Springer, Cham, Switzerland, 2020, 335–351 (In Russ).
  15. E. B. Kuznetsov, S. S. Leonov, E. D. Tsapko, “A new numerical approach for solving initial value problems with exponential growth integral curves”, IOP Conference Series: Materials Science and Engineering, 927:1 (2020), 012032. DOI: https://doi.org/10.1088/1757-899x/927/1/012032
  16. K. W. Chang, F. A. Howes, Nonlinear singular perturbation phenomena: theory and application, Springer-Verlag, New York, Berlin, Heidelberg, Tokyo, 1984, 181 p.
  17. E. B. Kuznetsov, S. S. Leonov, E. D. Tsapko, “Applying the best parameterization method and its modifications for numerical solving of some classes of singularly perturbed problems”, Advances in Theory and Practice of Computational Mechanics. Vol. 274, Springer, Singapore, 2022, 311–330.
  18. V. F. Formalyov, D. L. Reviznikov, [Numerical methods], Physmatlit Publ., Moscow, 2004 (In Russ.), 400 p.
  19. N. N. Kalitkin, [Numerical methods], BHV-Petersburg Publ., Saint Petersburg, 2011 (In Russ.), 592 p.
  20. A. A. Belov, N. N. Kalitkin, “Features of calculating contrast structures in the Cauchy problem”, Mathematical Models and Computer Simulations, 9:3 (2017), 281–291 (In Russ.). DOI: https://doi.org/10.1134/S2070048217030048

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2022 Tsapko E.D.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

We use cookies and Yandex.Metrica to improve the Site and for good user experience. By continuing to use this Site, you confirm that you have been informed about this and agree to our personal data processing rules.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).