A Lyapunov–Schmidt Analysis of Forced Oscillations in an Inhomogeneous Linear Oscillator Chain

Cover Page

Cite item

Full Text

Abstract

Longitudinal oscillations of an inhomogeneous chain of linear oscillators coupled by springs are investigated. Both outer  springs of the chain are rigidly fixed to immovable supports. The system is subjected to external periodic forces.
The inhomogeneity of the chain (the perturbed system) is due to the different stiffness coefficients of the springs. These coefficients deviate slightly from a certain nominal value and depend on dimensionless deviation parameters. Zero values of these parameters correspond to a homogeneous (unperturbed) system.
The resonant case is considered when the frequency of the external periodic force coincides with one of the eigenfrequencies of the unperturbed system.
To construct an exact periodic solution of the perturbed system, the Lyapunov–Schmidt method is applied. As the problem is linear,  this method allows to reduce it to a finite-dimensional algebraic problem of constructing a generalized Jordan chain for a degenerate linear operator.
Necessary and sufficient conditions on the dimensionless deviation parameters are obtained, under which the length of such a chain is equal to 1 or 2. For each case, explicit exact formulas for the chain are derived, providing a complete description of the periodic solution.
It is shown that for a generalized Jordan chain of length 1, the periodic solution of the perturbed system continuously transforms into a certain periodic solution of the unperturbed system as the small parameter $\varepsilon$ tends to zero.
If the length of the generalized Jordan chain is $2$, the periodic solution of the perturbed system possesses a first-order pole at $\varepsilon=0$ and, reduces to a one-parameter family of periodic solutions of the unperturbed system.
Numerical simulation was performed for a chain of eight oscillators. Plots of periodic solutions and phase trajectories of the perturbed system are constructed for various values of the small parameter.
 

About the authors

Pavel A. Shamanaev

Sirius University of Science and Technology

Email: korspa@yandex.ru
ORCID iD: 0000-0002-0135-317X

Ph.D. (Phys.-Math.), Leading Research Engineer, Department of «Mathematical robotics and artificial intelligence»

Russian Federation, 1 Olympic Ave., Sirius Federal Territory 354340, Russia

Dmitry A. Katin

National Research Mordovia State University

Email: dmitriykatinn@gmail.com
ORCID iD: 0009-0009-6335-6016

student of the Faculty of Mathematics and Information Technology

Russian Federation, 68 Bolshevistskaya str., Saransk, 430005, Russia

Natalya Oshina

National Research Mordovia State University

Author for correspondence.
Email: natali.oshina@mail.ru
ORCID iD: 0009-0004-9193-3590

student of the Faculty of Mathematics and Information Technology

Russian Federation, 68 Bolshevistskaya str., Saransk, 430005, Russia

References

  1. F. R. Gantmakher, M. G. Krein, Oscillation matrices and kernels and small oscillations of mechanical systems [Ostsillyatsionnye matritsy i yadra i malye kolebaniya mekhanicheskikh sistem], 2nd ed., Gostekhizdat, Moscow, 1950, 200 p.
  2. F. R. Gantmakher, Lectures on analytical mechanics [Lektsii po analiticheskoi mekhanike], Nauka, Moscow, 1966, 300 p.
  3. V. V. Bolotin, Vibrations in engineering: Handbook in 6 volumes. Volume 1. Oscillations of linear systems [Vibratsii v tekhnike: Spravochnik v 6-ti tomakh. Tom 1. Kolebaniya lineinykh sistem], ed., Mashinostroenie, Moscow, 1978, 352 p.
  4. D. I. Trubetskov, A. G. Rozhnev, Linear oscillations and waves [Lineinye kolebaniya i volny], FIZMATLIT, Moscow, 2001, 416 p.
  5. S. P. Strelkov, Introduction to the theory of oscillations [Vvedenie v teoriyu kolebanii], 3rd ed., revised, Lan, St. Petersburg, 2005, 440 p.
  6. P. S. Landa, Nonlinear oscillations and waves [Nelineinye kolebaniya i volny], Nauka,
  7. FIZMATLIT, Moscow, 1997, 495 p.
  8. M. M. Vainberg, V. A. Trenogin, Theory of branching of solutions of nonlinear equations [Teoriya vetvleniya reshenii nelineinykh uravnenii], Nauka, Moscow, 1969, 527 p.
  9. N. A. Sidorov, B. V. Loginov, A. Sinitsyn, M. Falaleev, Lyapounov-Schmidt methods in nonlinear analysis and applications, Kluwer Academic Publishers, 2002, 548 p.
  10. A. A. Kyashkin, B. V. Loginov, P. A. Shamanaev, ''On branching of periodic solutions of linear nonhomogeneous differential equations with a degenerate or identity operator at the derivative and perturbation in the form of a small linear term [O vetvlenii periodicheskikh reshenii lineinykh neodnorodnykh differentsial'nykh uravnenii c
  11. vyrozhdennym ili tozhdestvennym operatorom pri proizvodnoi i vozmushcheniem v vide malogo lineinogo slagaemogo]'', Journal of the Middle Volga Mathematical Society, 18:1 (2016), 45–53.
  12. P. A. Shamanaev, ''On biorthogonalization of complete generalized Jordan sets of a linear operator and its adjoint in a Banach space [O biortogonalizatsii polnykh obobshchennykh zhordanovykh naborov lineinogo operatora i emu sopryazhennogo v banakhovom prostranstve]'', Mathematical modeling, numerical
  13. methods and software complexes: X International Scientific Youth SchoolSeminar named after E.V. Voskresensky (Saransk, July 14--18, 2022), 221–224, https://conf.svmo.ru/files/2022/papers/paper35.pdf.
  14. P. A. Shamanaev, S. A. Prokhorov, ''Algorithm for solving systems of linear algebraic equations with a small parameter by the Lyapunov-Schmidt method in the regular case [Algoritm resheniya sistem lineinykh algebraicheskikh uravnenii s malym parametrom metodom Lyapunova-Shmidta v reguliarnom sluchae]'', Mathematical modeling, numerical methods and software complexes named after E.V. Voskresensky: IX
  15. International Scientific Youth School-Seminar (Saransk, October 8–11, 2020), 129–131,
  16. https://conf.svmo.ru/files/2020/papers/paper40.pdf
  17. F. R. Gantmakher, Theory of matrices [Teoriya matrits], 2nd ed., Nauka, Moscow, 1966, 576 p.
  18. V. A. Trenogin, Functional analysis [Funktsional'nyi analiz], FIZMATLIT, Moscow, 2007, 488 p.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Shamanaev P.A., Katin D.A., Oshina N.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

We use cookies and Yandex.Metrica to improve the Site and for good user experience. By continuing to use this Site, you confirm that you have been informed about this and agree to our personal data processing rules.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).