Classification of suspensions over cartesian products of orientation-reversing diffeomorphisms of a circle

Cover Page

Cite item

Full Text

Abstract

This paper introduces class $G$ containing Cartesian products of orientation-changing rough transformations of the circle and studies their dynamics. As it is known from the paper of A.G. Maier non-wandering set of orientation-changing diffeomorphism of the circle consists of $2q$ periodic points, where $q$ is some natural number. So Cartesian products of two such diffeomorphisms has $4q_1q_2$ periodic points where $q_1$ corresponds to the first transformation and $q_2$ corresponds to the second one. The authors describe all possible types of the set of periodic points, which contains $2q_1q_2$ saddle points, $q_1q_2$ sinks, and $q_1q_2$ sources; $4$ points from mentioned $4q_1q_2$ periodic ones are fixed, and the remaining $4q_1q_2-4$ points have period $2$. In the theory of smooth dynamical systems, a very useful result is that, given a diffeomorphism $f$ of a manifold, one can construct a flow on a manifold with dimension one greater; this flow is called the suspension over $f$. The authors introduce the concept of suspension over diffeomorphisms of class $G$, describe all possible types of suspension orbits and the number of these orbits. Besides that, the authors prove a theorem on the topology of the manifold on which the suspension is given. Namely, the carrier manifold of the flows under consideration is homeomorphic to the closed 3-manifold $\mathbb T^2 \times [0,1]/\varphi$, where $\varphi :\mathbb T^ 2 \to \mathbb T^2$. The main result of the paper says that suspensions over diffeomorphisms of the class $G$ are topologically equivalent if and only if corresponding diffeomorphisms are topologically conjugate. The idea of the proof is to show that the topological equivalence of the suspensions $\phi^t$ and $\phi'^t$ implies the topological conjugacy of $\phi$ and $\phi'$.
 

About the authors

Svetlana Kh. Zinina

National Research Mordovia State University

Email: kapkaevasvetlana@yandex.ru
ORCID iD: 0000-0003-3002-281X
Russian Federation, 68/1 Bolshevistskaya St., Saransk 430005, Russia

Pavel I. Pochinka

Higher School of Economics

Author for correspondence.
Email: pavel-pochinka@yandex.ru
ORCID iD: 0000-0002-6377-747X
Russian Federation, 25/12 B. Pecherskaya St., Nizhny Novgorod 603150, Russia

References

  1. A. A. Andronov, L. S. Pontryagin, “Rough systems”, Reports of the Academy of Sciences of the USSR, 14:5 (1937), 247–250 (In Russ.).
  2. A. G. Maier, “A rough transformation of a circle into a circle”, Uch. Zap. Gorkovskogo Univ., 12 (1939), 215–229 (In Russ.).
  3. E. Ya. Gurevich, S. Kh. Zinina, “On topological classification of gradient-like systems on surfaces, that are locally direct product”, Zhurnal Srednevolzhskogo matematicheskogo obshchestva, 17:1 (2015), 37–47 (In Russ.).
  4. I. V. Golikova, S. Kh. Zinina, “Topological conjugacy of n-multiple Cartesian products of circle rough transformations”, Izvestiya Vysshikh Uchebnykh Zavedenii. Applied Nonlinear Dynamics, 29:6 (2021), 851–862 (In Russ.). DOI: https://doi.org/10.18500/0869-6632-2021-29-6-851-862
  5. M. M. Peixoto, “On structural stability”, Ann. Math., 69 (1959), 199–222.
  6. R. Mane, “A proof of C¹ stability conjecture”, Publ. Math. IHES, 66 (1988), 161–210
  7. C. Robinson, “Structural stability of C¹ diffeomorphisms”, J. Diff. Equat., 22:1 (1976), 28–73.
  8. S. Smale, “Differentiable dynamical systems”, Bull. Amer. Math. Soc., 73:6 (1967), 747–817.
  9. J. Palis, “On Morse-Smale dynamical systems”, Topology, 8:5 (1969), 385–404.
  10. J. Palis, S. Smale, “Structural stability theorems”, Global Analysis, Proc. Sympos. Pure Math., 14 (1970), 223–231.
  11. J. Palis, W. de Melo, Geometric theory of dynamical systems. An introduction, Springer-Verlag, New York, Heidelberg, Berlin, 1982, 198 p.
  12. V. Grines, T. Medvedev, O. Pochinka, Dynamical systems on 2- and 3-manifolds., Springer, Switzerland, 2016 DOI: https://doi.org/10.1007/978-3-319-44847-3, 313 p.
  13. A. I. Morozov, O. V. Pochinka, “Combinatorial invariant of Morse-Smale diffeomorphisms on surfaces with orientable heteroclinic”, Zhurnal Srednevolzhskogo matematicheskogo obshchestva, 22:1 (2020), 71–80 (In Russ.). DOI: https://doi.org/10.15507/2079-6900.22.202001.71-80
  14. D. D. Shubin, “Topology of ambient manifolds of non-singular Morse – Smale flows with three periodic orbits”, Izvestiya Vysshikh Uchebnykh Zavedenii. Applied Nonlinear Dynamics, 29:6 (2021), 863–868 (In Russ.). DOI: https://doi.org/10.18500/0869-6632-2021-29-6-863-868
  15. I. V. Golikova, O. V. Pochinka, “Suspension over rough circle transformation”, OgarevOnline, 2020, no. 13 (In Russ.), Available at: http://journal.mrsu.ru/arts/nadstrojkinad-grubymi-preobrazovaniyami-okruzhnosti.
  16. A. E. Kolobyanina, E. V. Nozdrinova, O. V. Pochinka, “Classification of rough transformations of a circle from a modern point of view”, Zhurnal Srednevolzhskogo matematicheskogo obshchestva, 20:4 (2018), 408–418 (In Russ.). DOI: https://doi.org/10.15507/2079-6900.20.201804.408-418
  17. A. E. Kolobyanina, E. V. Nozdrinova, O. V. Pochinka, “Classification of rough transformations of a circle from a modern point of view”, Zhurnal Srednevolzhskogo matematicheskogo obshchestva, 20:4 (2018), 408–418 (In Russ.). DOI: https://doi.org/10.15507/2079-6900.20.201804.408-418

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2022 Zinina S.K., Pochinka P.I.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

We use cookies and Yandex.Metrica to improve the Site and for good user experience. By continuing to use this Site, you confirm that you have been informed about this and agree to our personal data processing rules.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).