Classification of suspensions over cartesian products of orientation-reversing diffeomorphisms of a circle
- Autores: Zinina S.K.1, Pochinka P.I.2
-
Afiliações:
- National Research Mordovia State University
- Higher School of Economics
- Edição: Volume 24, Nº 1 (2022)
- Páginas: 54-65
- Seção: Mathematics
- ##submission.dateSubmitted##: 19.12.2025
- ##submission.dateAccepted##: 28.12.2025
- ##submission.datePublished##: 24.02.2022
- URL: https://journals.rcsi.science/2079-6900/article/view/360032
- DOI: https://doi.org/10.15507/2079-6900.24.202201.54-65
- ID: 360032
Citar
Texto integral
Resumo
Sobre autores
Svetlana Zinina
National Research Mordovia State University
Email: kapkaevasvetlana@yandex.ru
ORCID ID: 0000-0003-3002-281X
Rússia, 68/1 Bolshevistskaya St., Saransk 430005, Russia
Pavel Pochinka
Higher School of Economics
Autor responsável pela correspondência
Email: pavel-pochinka@yandex.ru
ORCID ID: 0000-0002-6377-747X
Rússia, 25/12 B. Pecherskaya St., Nizhny Novgorod 603150, Russia
Bibliografia
- A. A. Andronov, L. S. Pontryagin, “Rough systems”, Reports of the Academy of Sciences of the USSR, 14:5 (1937), 247–250 (In Russ.).
- A. G. Maier, “A rough transformation of a circle into a circle”, Uch. Zap. Gorkovskogo Univ., 12 (1939), 215–229 (In Russ.).
- E. Ya. Gurevich, S. Kh. Zinina, “On topological classification of gradient-like systems on surfaces, that are locally direct product”, Zhurnal Srednevolzhskogo matematicheskogo obshchestva, 17:1 (2015), 37–47 (In Russ.).
- I. V. Golikova, S. Kh. Zinina, “Topological conjugacy of n-multiple Cartesian products of circle rough transformations”, Izvestiya Vysshikh Uchebnykh Zavedenii. Applied Nonlinear Dynamics, 29:6 (2021), 851–862 (In Russ.). DOI: https://doi.org/10.18500/0869-6632-2021-29-6-851-862
- M. M. Peixoto, “On structural stability”, Ann. Math., 69 (1959), 199–222.
- R. Mane, “A proof of C¹ stability conjecture”, Publ. Math. IHES, 66 (1988), 161–210
- C. Robinson, “Structural stability of C¹ diffeomorphisms”, J. Diff. Equat., 22:1 (1976), 28–73.
- S. Smale, “Differentiable dynamical systems”, Bull. Amer. Math. Soc., 73:6 (1967), 747–817.
- J. Palis, “On Morse-Smale dynamical systems”, Topology, 8:5 (1969), 385–404.
- J. Palis, S. Smale, “Structural stability theorems”, Global Analysis, Proc. Sympos. Pure Math., 14 (1970), 223–231.
- J. Palis, W. de Melo, Geometric theory of dynamical systems. An introduction, Springer-Verlag, New York, Heidelberg, Berlin, 1982, 198 p.
- V. Grines, T. Medvedev, O. Pochinka, Dynamical systems on 2- and 3-manifolds., Springer, Switzerland, 2016 DOI: https://doi.org/10.1007/978-3-319-44847-3, 313 p.
- A. I. Morozov, O. V. Pochinka, “Combinatorial invariant of Morse-Smale diffeomorphisms on surfaces with orientable heteroclinic”, Zhurnal Srednevolzhskogo matematicheskogo obshchestva, 22:1 (2020), 71–80 (In Russ.). DOI: https://doi.org/10.15507/2079-6900.22.202001.71-80
- D. D. Shubin, “Topology of ambient manifolds of non-singular Morse – Smale flows with three periodic orbits”, Izvestiya Vysshikh Uchebnykh Zavedenii. Applied Nonlinear Dynamics, 29:6 (2021), 863–868 (In Russ.). DOI: https://doi.org/10.18500/0869-6632-2021-29-6-863-868
- I. V. Golikova, O. V. Pochinka, “Suspension over rough circle transformation”, OgarevOnline, 2020, no. 13 (In Russ.), Available at: http://journal.mrsu.ru/arts/nadstrojkinad-grubymi-preobrazovaniyami-okruzhnosti.
- A. E. Kolobyanina, E. V. Nozdrinova, O. V. Pochinka, “Classification of rough transformations of a circle from a modern point of view”, Zhurnal Srednevolzhskogo matematicheskogo obshchestva, 20:4 (2018), 408–418 (In Russ.). DOI: https://doi.org/10.15507/2079-6900.20.201804.408-418
- A. E. Kolobyanina, E. V. Nozdrinova, O. V. Pochinka, “Classification of rough transformations of a circle from a modern point of view”, Zhurnal Srednevolzhskogo matematicheskogo obshchestva, 20:4 (2018), 408–418 (In Russ.). DOI: https://doi.org/10.15507/2079-6900.20.201804.408-418
Arquivos suplementares


