On generalized Romanovsky operators with partial integrals in the space of continuous functions
- Authors: Inozemtsev A.I.1
-
Affiliations:
- Russian State Agrarian University — Moscow Timiryazev Agricultural Academy
- Issue: Vol 27, No 3 (2025)
- Pages: 315-324
- Section: Mathematics
- Submitted: 17.10.2025
- Accepted: 17.10.2025
- Published: 27.10.2025
- URL: https://journals.rcsi.science/2079-6900/article/view/332242
- ID: 332242
Cite item
Full Text
Abstract
The paper contains sufficient conditions for the action of generalized and linear generalized partial integral Romanovsky operator in the space of continuous functions defined on an n-dimensional parallelepiped. Continuity of these operators is established in case of their action in the space of continuous functions and, in a more general case of continuous kernels of operators with values in the space of measurable and Lebesgue integrable functions. Estimates are obtained for the norms of the operators mentioned. The dependence of the estimate for the norm of a linear Romanovsky type operator with generalized partial integrals on the space dimension and on the norm of continuous kernels of generalized partial integral Romanovsky operators with values in the space of measurable and Lebesgue integrable functions is shown. The properties established are applied to the study of linear generalized partial integral equations of Romanovsky type, in particular, to the study of generalized partial integral equation of n-connected Markov chains.
About the authors
Aleksey I. Inozemtsev
Russian State Agrarian University — Moscow Timiryazev Agricultural Academy
Author for correspondence.
Email: a.inozemcev@rgau-msha.ru
ORCID iD: 0000-0002-7662-8991
Ph.D. (Phys. and Math.), associate professor, Department of Higher Mathematics
Russian Federation, 49, Timiryazevskay St., Moscow, 127434, Russian FederationReferences
- J. M. Appell, A. S. Kalitvin, P. P. Zabrejko, Partial Integral Operators and Integro - Differential Equations, 2020, 578 p.
- A. S. Kalitvin, V. A. Kalitvin, "Linear Operators and Equations with Partial Integrals", Journal Of Mathematical Sciences, 265:2 (2022), 196-235. doi: 10.1007/s10958-022-06052-y
- A. S. Kalitvin, Linejnye operatory s chastnymi integralami [Linear Operators with Partial Integrals], 2000 (In Russ.), 252 p.
- A. S. Kalitvin, A. I. Inozemtsev, V. A. Kalitvin, "Integral equations with multidimensional partial integrals", Journal Of Mathematical Sciences, 249:4 (2020), 954–966. doi: 10.1007/s10958-020-04987-8
- L. N. Lyakhov, A. I. Inozemtsev, N. I. Trusova, "About Fredgholm equations for partial integral in R²", Journal Of Mathematical Sciences, 251:6 (2020), 839–849. doi: 10.1007/s10958-020-05132-1
- L. N. Lyakhov, A. I. Inozemtsev, "Fredholm Equations with Multi-Dimensional Partial Integrals in Anisotropic Lebesgue Spaces", Journal Of Mathematical Sciences, 255:6 (2021), 715–725. doi: 10.1007/s10958-021-05408-0
- A. I. Inozemtsev, I. V. Barysheva, "Linear Fredholm and Volterra Partial Integral Equations in Anisotropic Lebesgue Spaces'', Journal Of Mathematical Sciences, 270:4 (2023), 556–561. doi: 10.1007/s10958-023-06366-5
- A. S. Kalitvin, Integralnye uravnenija tipa Romanovskogo s chastnymi integralami [Romanovsky integral equations with partial integrals], 2007 (In Russ.), 191 p.
- A. S. Kalitvin, V. A. Kalitvin, "The Approximate and Numerical Solution of Romanovskij Linear Partial Integral Equations", Journal Of Applied Engineering Science, 16:3 (2018), 441–446. doi: 10.5937/jaes16-18433
- L. N. Lyakhov, A. I. Inozemtsev, "Partial integrals in anisotropic Lebesgue Spaces. II: Multidimensional Case", Journal Of Mathematical Sciences, 247:6 (2020), 893–899. doi: 10.1007/s10958-020-04845-7
- L. N. Lyakhov, A. I. Inozemtsev, "Partial integrals in anisotropic Lebesgue Spaces. I: Two dimensional Case", Journal Of Mathematical Sciences, 247:6 (2020), 888–892. doi: 10.1007/s10958-020-04844-8
- V. Romanovskij, "Sur une classe dequations integrales lineares", Acta Math, 59 (1932), 99–208 (In Fr.).
Supplementary files



