Planarity ranks of semigroup varieties generated by semigroups of order four
- Authors: Solomatin D.V.1
-
Affiliations:
- Omsk State Pedagogical University
- Issue: Vol 27, No 2 (2025)
- Pages: 185-228
- Section: Mathematics
- Submitted: 10.10.2025
- Accepted: 10.10.2025
- Published: 27.10.2025
- URL: https://journals.rcsi.science/2079-6900/article/view/324414
- ID: 324414
Cite item
Full Text
Abstract
About the authors
Denis V. Solomatin
Omsk State Pedagogical University
Author for correspondence.
Email: solomatin_dv@omgpu.ru
ORCID iD: 0000-0002-9356-9890
Ph.D. (Phys.-Math.), Associate Professor, Department of Mathematics and Methods of Teaching Mathematics
Russian Federation, 14 Tukhachevsky Emb., Omsk 644099, RussiaReferences
- V. N. Remeslennikov, A. N. Rybalov, A. N. Shevlyakov, D. V. Solomatin, L. M. Martynov, G. A. Noskov, A. V. Treier, A. N. Zubkov, V. P. Il'ev, V. M. Gichev, "Novye problemy algebry i logiki. Yubileinoe 900-e zasedanie
- seminara: Omskii algebraicheskii seminar", 2015 (In Russ.), Available at: https://www.mathnet.ru/php/seminars.phtml?presentid=12900.
- D. V. Solomatin, "Rangi planarnosti mnogoobrazii kommutativnykh monoidov", Herald of Omsk University, 4 (2012), 41–45 (In Russ.).
- D. V. Solomatin, "Planarity ranks of semigroup varieties generated by all semigroups of order three", Siberian Electronic Mathematical Reports, 2025, no. 22, 95–109 (In Russ.). doi: 10.33048/semi.2025.22.008
- D. V. Solomatin, "The ranks of planarity for varieties of commutative semigroups", Prikladnaya Diskretnaya Matematika, 34 (2016), 50–64 (In Russ.). doi: 10.17223/20710410/34/4
- D. V. Solomatin, "On ranks of the planarity of varieties of all idempotent semigroups, nilsemigroups, and semigroups with the permutation identity", Herald of Omsk University, 2017, no. 86, 11–21 (In Russ.). doi: 10.25513/1812-3996.2017.4.11-21
- D. V. Solomatin, "On ranks of planarity of nil-semigroups varieties", Herald of Omsk University, 2019, no. 24, 17–22 (In Russ.). doi: 10.25513/1812-3996.2019.24(2).17-22
- N. Nupo, S. Panma, "Certain structural properties for Cayley regularity graphs of semigroups and their theoretical applications", AIMS Mathematics, 8:7 (2023), 16228–16239.. doi: 10.3934/math.2023830
- M. F. A. Alshammari, H. I. Mat Hassim, N. H. Sarmin, A. Erfanian, "The intersection power Cayley graph of cyclic groups of order pq", AIP Conf. Proc., 3150:1 (2024). doi: 10.1063/5.0229066
- T. Cheng, J. Mao, "A new class of directed strongly regular Cayley graphs over dicyclic groups", AIMS Mathematics, 9:9 (2024), 24184–24192.. doi: 10.3934/math.20241176
- I. Garcia-Marco, K. Knauer, "Coloring minimal Cayley graphs", European Journal of Combinatorics, 125 (2025). doi: 10.1016/j.ejc.2024.104108
- J. Meksawang, S. Panma, U. Knauer, "Characterization of finite simple semigroup digraphs", Algebra and Discrete Mathematics, 12:1 (2011), 53–68..
- A. Zulkarnain, N. H. Sarmin, H. I. Mat Hassim, A. Erfanian, "A variation of Cayley graph for cyclic groups of composite order", AIP Conference Proceedings, 3189:1 (2024). doi: 10.1063/5.0225729
- R. Hernandez-Ortiz, K. Knauer, L. P. Montejano, M. Scheucher, "Roudneff's Conjecture in Dimension 4", EUROCOMB'23, 2023, 561–567.. doi: 10.5817/CZ.MUNI.EUROCOMB23-078
- S. Felsner, K. Knauer, T. Ueckerdt, "Plattenbauten: Touching Rectangles in Space", Adler I., Muller, H. (eds) Graph-Theoretic Concepts in Computer Science. WG 2020. Lecture Notes in Computer Science(), 12301, 2020, 161–173 doi: 10.1007/978-3-030-60440-0_13.
- D. V. Solomatin, "Researches of semigroups with planar Cayley graphs: results and problems", Discrete Applied Mathematics, 2021, no. 54, 5–57 (In Russ.). doi: 10.17223/20710410/54/1
- C. C. Edmunds, "Varieties generated by semigroups of order four", Semigroup Forum, 21 (1980), 67–81. doi: 10.1007/BF02572537
- W. McCune et al., "Prover9 manual", 2009, Available at: https://www.cs.unm.edu/~mccune/prover9/manual/2009-11A/.
- W. McCune, "Mace4 reference manual and guide", 2003, Available at: https://arxiv.org/abs/cs/0310055/.
- Le S. J. Josse, F. Husson, "FactoMineR: An R Package for Multivariate Analysis", Journal of Statistical Software, 25:1 (2008), 1–18. doi: 10.18637/jss.v025.i01
- D V. Solomatin, "Rangi planarnosti mnogoobrazii, porozhdennykh ne idempotentnymi i ne perestanovochnymi polugruppami chetvertogo poryadka", Collection of Abstracts. International Conference MAL'TSEV MEETING. November 11–15, 2024, 2024, 125 (In Russ.).
Supplementary files



