Planarity ranks of semigroup varieties generated by semigroups of order four

Cover Page

Cite item

Full Text

Abstract

This paper classifies semigroup varieties generated by fourth-order semigroups according to their planarity ranks. The aim of the study is to establish a complete list of possible values of planarity ranks  and to identify the main factors determining the possibility of planar stacking of Cayley graphs of free semigroups of the considered varieties. Methods from graph theory and algebras of identities are applied, using innovative algorithmic approaches to verify equality via the automated proof systems Prover9 and Mace4. The existing flat graph stackings for the Cayley graphs of the semigroups under consideration are shown in the figures. If there is no planarity, the particular forbidden minor discovered is indicated: a complete fifth-order graph or a complete bipartite graph containing three vertices in each of the parts. Special attention is paid to the statistical processing of the obtained results by the principal components analyse and the construction of hierarchical clustering. The figures show hierarchical trees, factor planes, correlation circles, and column diagrams of general inertia decomposition along coordinate axes. Although the planarity of the Cayley graph for a free semigroup of a manifold was previously intuitively associated with the complexity degree of the defining identities, in this paper this dependence is for the first time given a rigorous quantitative expression, depicted in tables. Within the framework of the study, auxiliary parameters are introduced, which allows to significantly increase the explanatory power of the model and divide manifolds into groups according to topological characteristics. As a result of the analysis it is established that the leading factors influencing the value of ranks are the parameters reflecting the differences of positions of the symbol «z» in the basis identities.
 

About the authors

Denis V. Solomatin

Omsk State Pedagogical University

Author for correspondence.
Email: solomatin_dv@omgpu.ru
ORCID iD: 0000-0002-9356-9890

Ph.D. (Phys.-Math.), Associate Professor, Department of Mathematics and Methods of Teaching Mathematics

Russian Federation, 14 Tukhachevsky Emb., Omsk 644099, Russia

References

  1. V. N. Remeslennikov, A. N. Rybalov, A. N. Shevlyakov, D. V. Solomatin, L. M. Martynov, G. A. Noskov, A. V. Treier, A. N. Zubkov, V. P. Il'ev, V. M. Gichev, "Novye problemy algebry i logiki. Yubileinoe 900-e zasedanie
  2. seminara: Omskii algebraicheskii seminar", 2015 (In Russ.), Available at: https://www.mathnet.ru/php/seminars.phtml?presentid=12900.
  3. D. V. Solomatin, "Rangi planarnosti mnogoobrazii kommutativnykh monoidov", Herald of Omsk University, 4 (2012), 41–45 (In Russ.).
  4. D. V. Solomatin, "Planarity ranks of semigroup varieties generated by all semigroups of order three", Siberian Electronic Mathematical Reports, 2025, no. 22, 95–109 (In Russ.). doi: 10.33048/semi.2025.22.008
  5. D. V. Solomatin, "The ranks of planarity for varieties of commutative semigroups", Prikladnaya Diskretnaya Matematika, 34 (2016), 50–64 (In Russ.). doi: 10.17223/20710410/34/4
  6. D. V. Solomatin, "On ranks of the planarity of varieties of all idempotent semigroups, nilsemigroups, and semigroups with the permutation identity", Herald of Omsk University, 2017, no. 86, 11–21 (In Russ.). doi: 10.25513/1812-3996.2017.4.11-21
  7. D. V. Solomatin, "On ranks of planarity of nil-semigroups varieties", Herald of Omsk University, 2019, no. 24, 17–22 (In Russ.). doi: 10.25513/1812-3996.2019.24(2).17-22
  8. N. Nupo, S. Panma, "Certain structural properties for Cayley regularity graphs of semigroups and their theoretical applications", AIMS Mathematics, 8:7 (2023), 16228–16239.. doi: 10.3934/math.2023830
  9. M. F. A. Alshammari, H. I. Mat Hassim, N. H. Sarmin, A. Erfanian, "The intersection power Cayley graph of cyclic groups of order pq", AIP Conf. Proc., 3150:1 (2024). doi: 10.1063/5.0229066
  10. T. Cheng, J. Mao, "A new class of directed strongly regular Cayley graphs over dicyclic groups", AIMS Mathematics, 9:9 (2024), 24184–24192.. doi: 10.3934/math.20241176
  11. I. Garcia-Marco, K. Knauer, "Coloring minimal Cayley graphs", European Journal of Combinatorics, 125 (2025). doi: 10.1016/j.ejc.2024.104108
  12. J. Meksawang, S. Panma, U. Knauer, "Characterization of finite simple semigroup digraphs", Algebra and Discrete Mathematics, 12:1 (2011), 53–68..
  13. A. Zulkarnain, N. H. Sarmin, H. I. Mat Hassim, A. Erfanian, "A variation of Cayley graph for cyclic groups of composite order", AIP Conference Proceedings, 3189:1 (2024). doi: 10.1063/5.0225729
  14. R. Hernandez-Ortiz, K. Knauer, L. P. Montejano, M. Scheucher, "Roudneff's Conjecture in Dimension 4", EUROCOMB'23, 2023, 561–567.. doi: 10.5817/CZ.MUNI.EUROCOMB23-078
  15. S. Felsner, K. Knauer, T. Ueckerdt, "Plattenbauten: Touching Rectangles in Space", Adler I., Muller, H. (eds) Graph-Theoretic Concepts in Computer Science. WG 2020. Lecture Notes in Computer Science(), 12301, 2020, 161–173 doi: 10.1007/978-3-030-60440-0_13.
  16. D. V. Solomatin, "Researches of semigroups with planar Cayley graphs: results and problems", Discrete Applied Mathematics, 2021, no. 54, 5–57 (In Russ.). doi: 10.17223/20710410/54/1
  17. C. C. Edmunds, "Varieties generated by semigroups of order four", Semigroup Forum, 21 (1980), 67–81. doi: 10.1007/BF02572537
  18. W. McCune et al., "Prover9 manual", 2009, Available at: https://www.cs.unm.edu/~mccune/prover9/manual/2009-11A/.
  19. W. McCune, "Mace4 reference manual and guide", 2003, Available at: https://arxiv.org/abs/cs/0310055/.
  20. Le S. J. Josse, F. Husson, "FactoMineR: An R Package for Multivariate Analysis", Journal of Statistical Software, 25:1 (2008), 1–18. doi: 10.18637/jss.v025.i01
  21. D V. Solomatin, "Rangi planarnosti mnogoobrazii, porozhdennykh ne idempotentnymi i ne perestanovochnymi polugruppami chetvertogo poryadka", Collection of Abstracts. International Conference MAL'TSEV MEETING. November 11–15, 2024, 2024, 125 (In Russ.).

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Solomatin D.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

We use cookies and Yandex.Metrica to improve the Site and for good user experience. By continuing to use this Site, you confirm that you have been informed about this and agree to our personal data processing rules.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).