On orthogonalization of Schoenberg splines

Cover Page

Cite item

Full Text

Abstract

The article is devoted to the application of the author's orthogonalization procedure of finite functions, which does not destroy their finite supports, to Schoenberg splines of the third degree. A general algorithm for modifying the Schoenberg mother spline within the framework of this orthogonalization procedure is described. It is shown that orthogonalization of the grid set of splines generated by the Schoenberg spline is achieved without changing the finite supports of the splines in the case of using eight step functions to modify the mother spline. Sixteen variants of orthogonalization for the cubic Schoenberg splines by step functions are found. In the first group of eight variants, all coefficients of the modifying step functions have real values, but the Schoenberg splines after such modification are not even or odd functions. In each of the eight variants of the second group, two coefficients are complex, and the remaining six coefficients have real values. The modified Schoenberg splines of the second group are sums of even and odd functions. A theorem on the order of approximation of any function from the Sobolev space by linear combinations of constructed orthogonal Schoenberg splines is proved.

About the authors

Victor L. Leontiev

Peter the Great St. Petersburg Polytechnic University

Author for correspondence.
Email: leontiev_vl@spbstu.ru
ORCID iD: 0000-0002-8669-1919

D. Sci. (Phys. and Math.), Professor of World-Class Research Center for Advanced Digital Technologies
Russian Federation, 29, Politechnicheskaya str., litera B, St. Petersburg, 195251, Russia

References

  1. I. J. Schoenberg, "Contributions to the problem of approximation of equidistant data by analytic functions, Part A and B", Quart. Appl. Math., 4:2 (1946), 45–99, 112–141.
  2. A. Haar, "Zue Theorie der orthogonalen Funktionensysteme", Math. Ann., 69:3 (1910), 331–371. doi: 10.1007/BF01456326
  3. G. Faber, "Uber die Orthogonalfunktionen des Herrn Haar", Jahresbericht der Deutschen Mathematiker-Vereinigung, 19 (1910), 104–112.
  4. J. Shauder, "Eine Eigenschaft des Haarschen Orthogonalsystems", Math. Z., 28:1 (1928), 317–320. doi: 10.1007/BF01181164
  5. G. Strang, G. Fix, An analysis of the finite element method, Prentice-Hale. PresticeHall, Inc., Englewood Cliffs, N. J., 1973 (In Russ.), 306 p.
  6. V. L. Leontiev, Orthogonal splines and special functions in methods of computational mechanics and mathematics, POLITEH-PRESS, SpB, 2021 doi: 10.18720/SPBPU/2/i21-120 (In Russ.), 466 p.
  7. V. L. Leontiev, "Ob ortogonalnih finitnih funkciah i o chislennih metodah, sviazannih s ih primeneniem", Obozrenie prikladnoy i promishlennoy matematiki, 9:3 (2002), 497–504 (In Russ.).
  8. V. L. Leontiev, I. S. Milhaylov, "About the building the potential of the atomic interaction based on orthogonal finite functions", Nano- and microsystems technology, 9:134 (2011), 48–50 (In Russ.).
  9. I. J. Schoenberg, "Spline Functions and the problem of Graduation", Proceedings of the National Academy of Sciences of USA, 52:4 (October 1964), 947–950. doi: 10.1073/pnas.52.4.947
  10. V. G. Alekseev, V. A. Suhodoev, "Schoenberg's polynomial B-splines of odd degrees: A brief review of application", Computational Mathematics and Mathematical Physics, 52:10 (2012), 1331–1341. doi: 10.1134/S096554251
  11. V. G. Alekseev, "B-splyni Schoenberg i ih primenenia v radiotehnike i v smegnih s ney disciplinah", Radiotehnika, 12 (2003), 21–23 (In Russ.).
  12. A. Kushpel, K. Tas, "On the problem of Schoenberg on Rⁿ", Journal of Mathematical Analysis, 15:6 (2024), 71–81. doi: 10.54379/jma-2024-6-6
  13. I. E. Svetov, "Ispolzovanie B-splynov pri chislennom reshenii zadachi vektornoy 2-D tomografii", Metodi spline-funkciy., Rossiyskaya konferencia, posviashennia 80-letiuYu. S. Zavialova (31.01.2011–02.02.2011, Novosibirsk), Institut matematiki im. S. L. Soboleva Sibirskogo otd. RAN, 2011, 81–82 (In Russ.).
  14. Yu. S. Volkov, E. V. Strelkova, V. T. Shevaldin, "O lokalnoy approksimacii kubicheskimi splynami", Metodi spline-funkciy, Rossiyskaya konferencia, posviashennia 80-letiu Yu. S. Zavialova (31.01.2011–02.02.2011, Novosibirsk), Institut matematiki im. S. L. Soboleva Sibirskogo otd. RAN, 2011, 35–36 (In Russ.).
  15. Yu. S. Volkov, Yu. N. Subbotin, "Fifty years of Schoenberg's problem on the convergence of spline interpolation", Trudy Instituta Matematiki i Mekhaniki UrO RAN, 20:1 (2014), 52–67. doi: 10.1134/S0081543815020236
  16. K. Jetter, S. D. Riemenschneider, N. Sivakumar, "Schoenberg's exponential Euler spline curves", Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 118:1–2 (1991), 21–33. doi: 10.1017/S0308210500028869
  17. T. Briand, P. Monasse, "Theory and Practice of Image B-Spline Interpolation", Image Processing On Line, 8 (2018), 99–141. doi: 10.5201/ipol.2018.221
  18. G. I. Marchuk, V. I. Agoshkov, Vvedenie v proektsionno-setochnye metody, Nauka, M., 1981 (In Russ.), 416 p.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Leontiev V.L.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

We use cookies and Yandex.Metrica to improve the Site and for good user experience. By continuing to use this Site, you confirm that you have been informed about this and agree to our personal data processing rules.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).