On some universal criterion for a fixed point

Cover Page

Cite item

Full Text

Abstract

Fixed point criteria may be applied in various fields of mathematics. The problem of finding sufficient conditions for transformations of a certain class to have a fixed point is well known. In the context of element-wise description for the monoid of all endomorphisms of a groupoid, the following were formulated: a bipolar classification of endomorphisms and related mathematical objects. In particular, the concept of a bipolar type of endomorphism of a groupoid (or simply a bipolar type) was stated. Every endomorphism of an arbitrary groupoid has exactly one bipolar type. In this paper, using bipolar types, a fixed point criterion for an arbitrary transformation of a nonempty set (hereinafter, the universal fixed point criterion) is formulated and proved. This criterion is not easy to apply. Further expansion of the range of problems to which this criterion can be applied depends directly on the success in studying the properties of groupoids’ endomorphisms. The paper formulates such general problems (unsolved for today), that the success in their study will expand the possibilities of using the universal fixed point criterion. The connection between the formulated problems and the obtained criterion is discussed. In particular, necessary and sufficient conditions for the Riemann hypothesis on the zeros of the Riemann zeta function to be satisfied are obtained using the universal fixed point criterion.

About the authors

Andrey V. Litavrin

Siberian Federal University

Author for correspondence.
Email: anm11@rambler.ru
ORCID iD: 0000-0001-6285-0201

Ph. D. in Physics and Mathematics, Associate Professor
of the Department of Higher Mathematics No. 2
Russian Federation, 79 Svobodny Av., Krasnoyarsk 660041, Russia

References

  1. E. M. Bogatov, "On the history of the fixed point method and the contribution of the soviet mathematicians (1920s-1950s.)", Chebyshevskii Sbornik, 19:2 (2018), 30–55. doi: 10.22405/2226-8383-2018-19-2-30-55 (In Russ.).
  2. M. Bernkopf, "The development of function spaces with particular reference to their origins in integral equation theory, Arch. Hist. Exact Sci., 3 (1966), 1–96.
  3. G. D. Birkhoff, O. D. Kellogg, "Invariant points in function space", Transactions of the American Mathematical Society, 23:1 (1922), 96–115. doi: 10.2307/1988914.
  4. J. Schauder, "Zur Theorie stetiger Abbildungen in Funktionalraumen", Math. Zeitschrift, 26:1 (1927), 47–65. doi: 10.1007/bf01475440.
  5. A. V. Litavrin, "On an Elemmaent-by-Elemmaent Description of the Monoid of all Endomorphisms of an Arbitrary Groupoid and One Classification of Endomorphisms of a Groupoid", Proc. Steklov Inst. Math. (Suppl.), 321:1 (2023), S170–S185. doi: 10.1134/S008154382303015X.
  6. A. V. Litavrin, "On the bipolar classification of endomorphisms of a groupoid", Journal of SFU. Series Mathematics and Physics, 17:3 (2024), 378–387.
  7. M. N. Nazarov, "A Self-Induced Metric on Groupoids and its Application to the Analysis of Cellular Interactions in Biology", J. Math. Sci., 206:5 (2015), 561–569. doi: 10.1007/s10958-015-2333-5.
  8. S. Yu. Katyshev, V. T. Markov, A. A. Nechaev, "Application of non-associative groupoids to the realization of an open key distribution procedure", Discrete Math. Appl., 25:1 (2015), 9–24. doi: 10.1515/dma-2015-0002.
  9. A. V. Baryshnikov, S. Yu. Katyshev, "Application of non-associative structures to the construction of public key distribution algorithms", Mathematical Aspects of Cryptography, 9:4 (2018), 5–30. doi: 10.4213/mvk267 (In Russ.).
  10. V. T. Markov, A. V. Mikhalev, A. A. Nechaev, "Nonassociative algebraic structures in cryptography and coding", Journal of Mathematical Sciences (New York), 245:2 (2020), 178–196. doi: 10.1007/s10958-020-04685-5.
  11. A. V. Litavrin, "On Alternating Semigroups of Endomorphisms of a Groupoid", Siberian Adv. Math., 34:2 (2024), 105–115. doi: 10.1134/S1055134424020032.
  12. M. A. Korolev, "Gram's law in the theory of Riemann zeta-function. Part 1", Modern problems of mathematics, 20 (2015), 3–161. DOI: doi.org/10.4213/spm53 (In Russ.).
  13. M. K. Kerimov, "Methods of computing the Riemann zeta-function and some generalizations of it", USSR Comput. Math. Math. Phys., 20:6 (1980), 212–230. doi: 10.1016/0041-5553(80)90015-4.
  14. A. Yu. Yeremin, I. E. Kaporin, M. K. Kerimov, "Calculation of the Riemann zeta function in a complex domain", USSR Comput. Math. Math. Phys., 25:2 (1985), 111–119. doi: 10.1016/0041-5553(85)90116-8.
  15. G. Diamond, "Elementary methods in the study of the distribution of prime numbers", Uspekhi Mat. Nauk, 45:2 (1990), 79–114 (In Russ.).

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Litavrin A.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

We use cookies and Yandex.Metrica to improve the Site and for good user experience. By continuing to use this Site, you confirm that you have been informed about this and agree to our personal data processing rules.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).