Comparative analysis of some iterative processes for realization of fully conservative difference schemes for gas dynamics equations in Euler variables

Cover Page

Cite item

Full Text

Abstract

In iterative algorithms for fully conservative difference schemes (FCDS) for the equations of gas dynamics in Euler variables, new methods for selecting adaptive artificial viscosity (AAV) have been developed, which are used both in explicit iterative processes and in the separate tridiagonal matrix algorithm. Various methods for incorporating AAV are discussed in this paper, including those for effectively suppressing oscillations in velocity profiles. All iterative methods are described in detail and block diagrams are given. A grid embedding method for modeling on spatially irregular sects is proposed. Calculations of the classical arbitrary discontinuity decay problem (the Sod problem) using FCDS and the developed AAV methods in different iterative processes have been performed. Comparative analysis is carried out and the efficiency of the developed improved iterative processes and approaches to the choice of AAV in comparison with the works of other authors is shown. All calculations are illustrated. The figures show variants of solutions of the Sod problem on uniform and non-uniform meshes, as well as a comparison of the methods proposed in the paper for the calculation of the Sod problem on a uniform grid.

About the authors

Marina Ladonkina

Keldysh Institute of Applied Mathematics of RAS

Author for correspondence.
Email: ladonkina@imamod.ru
ORCID iD: 0000-0001-7596-1672

 Ph.D. (Phys. and Math.), Senior researcher 

Russian Federation, 4 Miusskaya sq., Moscow, 125047, Russia

Yurii Poveschenko

Keldysh Institute of Applied Mathematics of RAS

Email: hecon@mail.ru
ORCID iD: 0000-0001-9211-9057

D. Sci. (Phys. and Math.), Leading researcher 

Russian Federation, 4 Miusskaya sq., Moscow, 125047, Russia

Haochen Zhang

Moscow Institute of Physics and Technology

Email: chzhan.h@phystech.edu
ORCID iD: 0000-0003-1378-1777

 Postgraduate Student 

Russian Federation, 9 Institutskiy per., Dolgoprudny, Moscow Region, 141701, Russian Federation

References

  1. A. A. Samarsky, Yu. P. Popov, Difference methods for solving problems of gas dynamics, Nauka. Chief Editorial Board of Physical and Mathematical literature, Moscow, 1980 (In Russ.), 352 p.
  2. Yu. P. Popov, A. A. Samarsky, "Completely conservative difference schemes", USSR Computational Mathematics and Mathematical Physics, 9:4 (1969), 296–305. DOI: https://doi.org/10.1016/0041-5553(69)90049-4 (In Russ.).
  3. A. V. Kuzmin, V. L. Makarov, "An algorithm for constructing completely conservative difference schemes", USSR Computational Mathematics and Mathematical Physics, 22:1 (1982), 128–138. DOI: https://doi.org/10.1016/0041-5553(82)90170-7 (In Russ.).
  4. A. V. Kuzmin, V. L. Makarov, V. G. Meladze, "A completely conservative difference scheme for gas-dynamics equations of in Eulerian variables", USSR Computational Mathematics and Mathematical Physics, 20:1 (1980), 187–198. DOI: https://doi.org/10.1016/0041-5553(80)90072-5 (In Russ.).
  5. V. M. Goloviznin, I. V. Krayushkin, M. A. Ryazanov, A. A. Samarsky, "Twodimensional completely conservative difference schemes of gas dynamics with separated velocities", Preprints of the Keldysh Institute of Applied Mathematics, Academy of Sciences of SSSR, 105 (1983) (In Russ.), 33 p.
  6. Yu. V. Popov, I. V. Fryazinov, Adaptive artificial viscosity method numerical solution of equations of gas dynamics, Krasand, Moscow, 2014 (In Russ.), 288 p.
  7. Yu. A. Poveshchenko, M. E. Ladonkina, V. O. Podryga, O. R. Rahimly, Yu. S. Sharova, "On a two-layer completely conservative difference scheme of gas dynamics in Eulerian variables with adaptive regularization of solution", Keldysh Institute Preprints, 2019, 14. DOI: https://doi.org/10.20948/prepr-2019-14, 23 p. (In Russ.)
  8. O. Rahimly, V. Podryga, Y. Poveshchenko, P. Rahimly, Y. Sharova, "Two-layer completely conservative difference scheme of gas dynamics in Eulerian variables with adaptive regularization of solution.", Large-Scale Scientific Computing. LSSC 2019. Lecture Notes in Computer Science, 11958, Springer, Cham, 2020, 618–625 DOI: https://doi.org/10.1007/978-3-030-41032-2_71.
  9. M. E. Ladonkina, Yu. A. Poveschenko, O. R. Rahimly, H. Zhang, "Theoretical analysis of fully conservative difference schemes with adaptive viscosity", Zhurnal SVMO, 23:4 (2021), 412–423. DOI: https://doi.org/10.15507/2079-6900.23.202104.412-423 (In Russ.).
  10. M. E. Ladonkina, Yu. A. Poveschenko, O. R. Rahimly, H. Zhang, "Theoretical study of stability of nodal completely conservative difference schemes with viscous filling for gas dynamics equations in Euler variables", Zhurnal SVMO, 24:3 (2022), 317–330. DOI: https://doi.org/10.15507/2079-6900.24.202203.317-330 (In Russ.).
  11. G. A. Sod, "A survey of several finite difference methods for systems of nonlinear
  12. hyperbolic conservation laws", Journal of Computational Physics, 27:1 (1978), 1–31.
  13. M. E. Ladonkina, Y. A. Poveschenko, H. Zhang,, On one completely conservative difference scheme with viscous filling for gas dynamics equations, Youth Scientific Conference "New horizons of applied mathematics – 2024" (Keldysh Institute of Applied Mathematics), 1, 2024 (In Russ.).
  14. Z. Wu, Y.-X. Ren, "A shock capturing artificial viscosity scheme in consistent with the compact high-order finite volume methods", Journal of Computational Physics, 516:8 (2024), 113291. DOI: https://doi.org/10.1016/j.jcp.2024.113291.
  15. V.-T. Nguyen, T.-H. Phan, W.-G. Park, "Numerical modeling of multiphase compressible flows with the presence of shock waves using an interface-sharpeningvfive-equation model", International Journal of Multiphase Flow, 135 (2021), 103542. DOI: https://doi.org/10.1016/j.ijmultiphaseflow.2020.103542.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Ladonkina M., Poveschenko Y., Zhang H.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

We use cookies and Yandex.Metrica to improve the Site and for good user experience. By continuing to use this Site, you confirm that you have been informed about this and agree to our personal data processing rules.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).