System analysis of the influence of clouds on the assessment of solar optical radiation arriving at the earth

Cover Page

Cite item

Full Text

Abstract

The problem of achieving the receipt of the largest amount of solar optical radiation to a certain limited area of the Earth's surface in cloudy conditions is formulated from the standpoint of system analysis and solved. In accordance with the need to take into account the dynamics of the analyzed processes, the required correlation between the albedo of clouds and the zenith angle of the Sun, at which the largest amount of solar radiation will enter the selected area of the Earth, is investigated. It is shown that the maximum intake of solar radiation to the selected area will be recorded if there is a positive correlation between these indicators, i.e. if an increase in the zenith angle of the Sun is accompanied by an increase in the albedo of clouds, and a decrease in the zenith angle is accompanied by a decrease in the specified albedo.

About the authors

H. H. Asadov

National Aerospace Agency

Email: asadzade@rambler.ru
The head of the department. Doctor of Technical Sciences, Professor Baku, Republic of Azerbaijan

N. S. Abilova

National Aerospace Agency

Email: nergiz.ebilova36@gmail.com
Deputy. the head of the department. Doctoral student (post-graduate student) Baku, Republic of Azerbaijan

References

  1. Hollman R., Muller R.W., Gratzki A. CM-SAF surface radiation budget: first result with A VHRR data// Adv. Space. Res. 37. 2006.
  2. Mueller R., Matsousak C., Gratzki A., Hollman R., Behr H. The CM-SAF operational scheme for the satellite based retrieval of solar surface irradiance – a LUT based eigenvector hybrid approach// Remote sens. Environ. 113. 1012-1024. https://doi.org/10.1016/j.rse.2009.01.012 . 2009
  3. Harries J., Russel J., Hanafin J., Brindley H., Futyan J. et al. The geostationary earth radiation budget project// BAMS. 86. https://doi.org/10.1175/BAMS-86-7-945. 2005 .
  4. Carrer D., Ceamanos X., Moparthy S., Vincent C., Freitas C. and Trigo I.F . Satellite Retrieval of Downwelling Shortwave Surface Flux and Diffuse Fraction under All Sky Conditions in the Framework of the LSA SAF Program (Part 1: Methodology), Remote Sens., 11, 2523, https://doi.org/10.3390/rs11212532, 2019
  5. Bugliaro L., Piontek D., Kox S., Schmidl M., Mayer B., Müller R., Vázquez-Navarro M., Peters D.M., Grainger R.G., Gasteiger J., and Kar J. Combining radiative transfer calculations and a neural network for the remote sensing of volcanic ash using MSG/SEVIRI, Nat. Hazards Earth Syst. Sci. Discuss. [preprint], https://doi.org/10.5194/nhess-2021-270, in review, 2021.
  6. Alexandri G., Georgoulias A., and Balis D. Effect of Aerosols, Tropospheric NO2 and Clouds on Surface Solar Radiation over the Eastern Mediterranean (Greece), Remote Sens., 13, 2587, https://doi.org/10.3390/rs13132587, 2021.
  7. Trager-Chatterjee C., Muller R., Bendix J. Analysis of extreme summers and prior late winter/spring conditions in central Europe// Natural hazards and earth system sciences. 13. 1243-1257. https://doi.org/10.5194/nhess-13-1243-2013 . 2013.
  8. Hermann M., Papritz L. & Wernli H. A Lagrangian analysis of the dynamical and thermodynamic drivers of large-scale Greenland melt events during 1979–2017. Weather Clim. Dyn. 1, 497–518 (2020).
  9. Turner J. et al. An extreme high temperature event in coastal east Antarctica associated with an atmospheric river and record summer downslope winds. Geophys. Res. Lett. 49, e2021GL097108 (2022).
  10. Wild M. Global dimming and brightening: a review// Journal of geophysical research. 114. https://doi.org/10.1029/2008JD011470 . 2009.
  11. Gilgen H., Roesch A., Wild M., Ohmura A. Decadal changes in shortwave irradiance at the surface in the period from 1960 to 2000 estimated from Global energy balance archive data// Journal of geophysical research. 114. https://doi.org/10.1029/2008JD011383 . 2009.
  12. Baker A.J., Hodges K.I., Schiemann R.K. and Vidale P .L. Historical variability and lifecycles of North Atlantic midlatitude cyclones originating in the tropics, Journal of Geophysical Research: Atmospheres, 126, e2020JD033 924, 2021.
  13. Berkovic S. and Raveh-Rubin S. Persistent warm and dry extremes over the eastern Mediterranean during winter: The role of North Atlantic blocking and central Mediterranean cyclones, Quarterly Journal of the Royal Meteorological Society, 148, 2384–2409, 2022.
  14. Casson N., Contosta A., Burakowski E., Campbell J., Crandall M., Creed I., Eimers M., Garlick S., Lutz D., Morison M. et al. Winter weather whiplash: Impacts of meteorological events misaligned with natural and human Systems in Seasonally Snow-Covered Regions, Earth's Future, 7, 1434–1450, 2019.
  15. Faranda D., Alvarez-Castro M.C., Messori G., Rodrigues D. and Yiou P . The hammam effect or how a warm ocean enhances large scale 950 atmospheric predictability, Nature communications, 10, 1–7, 2019.
  16. Urbich I., Bendix J., Muller R. The seamless solar radiation (SESORA) forecast for solar surface irradiance method and validation// Remote sensing. 11. https://doi.org/10.3390/rs11212576 . 2019.
  17. Urbich I., Bendix J., Muller R. Development of a seamless forecast for solar radiation using ANAKLIM++// Remote Sensing. 12. https://doi.org/10.3390/rs12213672 . 2020.
  18. Yucel I., Onen A., Yilmaz K., and Gochis D.J. 2015: Calibration and evaluation of a flood forecasting system: Utility of numerical weather prediction model, data assimilation and satellite-based rainfall. J. Hydrol. , 523, 49–66, doi: 10.1016/j.jhydrol.2015.01.042.
  19. Zambon J.B., He R. and Warner J.C. 2014: Investigation of Hurricane Ivan using the coupled ocean–atmosphere–wave–sediment transport (COAWST) model. Ocean Dyn. , 64, 1535–1554, doi: 10.1007/s10236-014-0777-7.
  20. Muller R.W. Agrar meteorology and radiation// Encyclopedia of sustainability science and technology. 978-1-4419-0852-0. 2021.

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).