Approximation of Girsanov’s measure with logarithmic returns in the case of heavy-tailed distributions
- Авторлар: Danilishin A.R.1
-
Мекемелер:
- M.V. Lomonosov Moscow State University
- Шығарылым: Том 73, № 3 (2023)
- Беттер: 21-30
- Бөлім: Macrosystems Dynamics
- URL: https://journals.rcsi.science/2079-0279/article/view/287278
- DOI: https://doi.org/10.14357/20790279230303
- ID: 287278
Дәйексөз келтіру
Толық мәтін
Аннотация
The article is devoted to further development of the topic of applying the extended Girsanov principle for heavy-tailed distributions. The extended Girsanov principle involves finding the conditional mathematical expectation of the ratio of prices of underlying assets of option contracts at the current time to prices of underlying assets at the previous time. To do this, it is necessary to choose an appropriate model that will best describe the dynamics of this price ratio. The linear return or logarithmic return is typically used as the modeling object. In the case of linear returns, the risk-neutral dynamics for the heavy-tailed distribution (Su Johnson) was obtained in [1]. In [2], the effectiveness of the found martingale measure was demonstrated in the example of option contract valuation. However, there may be a need to use logarithmic returns, which have several useful properties (non-negativity of underlying asset prices, symmetry with respect to price increases and decreases). This article derives the martingale measure for the case where the approximation of logarithmic returns is considered. In the simplest case, the approximation coincides with linear returns, and as the degree of approximation increases, it approaches logarithmic returns.
Негізгі сөздер
Авторлар туралы
A. Danilishin
M.V. Lomonosov Moscow State University
Хат алмасуға жауапты Автор.
Email: danilishin-artem@mail.ru
PhD student
Ресей, MoscowӘдебиет тізімі
- Danilishin A, Golembiovsky D.Y. Risk-neytral’naya dinamika dlya ARIMA-GARCH modeli s oshibkami, raspredelennymi po zakonu 𝑆u Dzhonsona [Risk-neutral dynamics for ARIMA-GARCH random process with errors distributed according to the Johnson’s 𝑆u law]. Informatica I ee Primeneniya, 2020; V. 14, 1. P. 48-55. doi: 10.14357/19922264200107.
- Danilishin A, Golembiovsky D.Y. Otsenka stoimosti optsionov na osnove ARIMA-GARCH modelej s oshibkami, raspredelennymi po zakonu 𝑆𝑢 Dzhonsona [Option Pricing Based on ARIMA-GARCH Models with Johnson’s 𝑆𝑢-Distributed Errors]. Informatica I ee Primeneniya, 2020; V. 14, 4. P. 83-90. doi: 10.14357/19922264200412.
- Davis R., Resnick S. Limit theory for moving averages of random variables with regularity varying tail probabilities // Ann. Probab, 1985. Vol.13. Iss. 1. P. 179-195.
- Granger C., Joyeux R. An introduction to long- memory time series and fractional differencing // J. Time Ser. Anal, 1980. Vol. 1. P. 15-30.
- Elliott R.J., Madan D.B. A discrete time equivalent martingale measure // Math. Financ., 1998. Vol. 8. Iss. 2. P. 127–152. doi: 10.1111/1467-9965.00048.
- Rolski T., Schmidli H., Schmidt V. Stochastic Processes for Insurance & Finance // British Actuarial Journal, 1999. 6(04):876 – 877. doi: 10.1017/S1357321700002044.
- Nair J., Wierman B., Zwart B. The Fundamentals of Heavy Tails Properties, Emergence, and Estimation // Cambridge University Press, 2022. doi: 10.1017/9781009053730.
- Akgiray V. Conditional heteroscedasticity in time series of stock returns: Evidence and forecasts // J. Bus., 1989. Vol. 62. Iss. 1. P. 55–80. doi: 10.1086/296451.
- Follmer H., Schied A. Stochastic finance: An introduction in discrete time. — Berlin: Walter de Gruyter, 2002. 422 p.
- Johnson N. Systems of Frequency Curves Generated by Methods of Translation // Biometrika, 1949. Vol. 36. Iss. 1-2. P. 149-176. doi: 10.2307/2332539.
- Johnson N. Bivariate Distributions Based on Simple Translation Systems // Biometrika, 1949. Vol. 36. Iss. 3-4. P. 297-304. doi: 10.1093/biomet/36.3-4.297.
Қосымша файлдар
