On hidden attractors of nonlinear systems of differential equations with an infinite number of singular points

Cover Page

Cite item

Full Text

Abstract

The work carries out an analytical and numerical analysis of the bifurcations of cycles of two systems of equations, which, according to the authors of the systems, contain both an infinite number of unstable singular points and “hidden” chaotic attractors. It is shown that the transition to chaos in systems occurs, as in any other nonlinear chaotic systems of differential equations, in accordance with the universal bifurcation scenario of Feigenbaum-Sharkovsky-Magnitskii. In this case, due to the absence of homoclinic and heteroclinic separatrix contours, incomplete FShM bifurcation cascades are realized in the systems, ending with a complete subharmonic cascade and an incomplete homoclinic cascade of bifurcations. It has been proven that in both systems the so-called “hidden” attractors are in fact complex singular attractors of systems in the sense of the FShM theory.

About the authors

N. A. Magnitskii

Federal Research Center “Computer Science and Control” of Russian Academy of Sciences

Author for correspondence.
Email: nikmagn@gmail.com

Doctor of Physical and Mathematical Sciences, Professor

Russian Federation, Moscow

References

  1. Wang X., Chen G.R. A chaotic system with only one stable equilibrium // Commun. Nonlinear Sci. Numer. Simul. 2012. No. 17. P.1264-1272.
  2. Huan S., Li Q., Yang X.-S. Horseshoes in a chaotic system with only one stable equilibrium // Int. J. Bifurc. Chaos. 2013. Vol. 23. No. 1. 1350002.
  3. Wei Z., Zhang W. Hidden hyperchaotic attractors in a modified lorenz-stenflo system with only one stable equilibrium // Int. J. Bifurc. Chaos. 2014. Vol. 24, No. 10. 1450127.
  4. Pham V. T., Volos Ch. K., Jafari S. and Kapitaniak T. Coexistence of hidden chaotic attractors in a novel no-equilibrium system // Nonlinear Dynamics 2017. Vol. 87. No. 3. P. 2001–2010.
  5. Zuo Z. L. and Li C. Multiple attractors and dynamic analysis of a no-equilibrium chaotic system // Optik. 2016. Vol. 127. No. 19. P. 7952–7957.
  6. Sambas1 A., Mamat M., Vaidyanathan S., Mohamed M. A. and MadaSanjaya W. S. A New 4-D Chaotic System with Hidden Attractor and its Circuit Implementation // Int. J. Eng. & Tech. 2018. Vol. 7. No.3. P. 1245-1250
  7. Jafari S., Sprott J.C. Simple chaotic flows with a line equilibrium // Chaos, Solitons & Fractals. 2013. 57. P. 79–84.
  8. Mohamed M.A., Bonny T., Sambas A. et al. A Speech Cryptosystem Using the New Chaotic System with a Capsule-Shaped Equilibrium Curve // Computers, Materials & Continua. 2023. Vol. 75. 3. P.5987-6006
  9. Sambas1 A., Vaidyanathan S., Sen Zhang S. et al. A New Double-Wing Chaotic System with Coexisting Attractors and Line Equilibrium: Bifurcation Analysis and Electronic Circuit Simulation // IEEE Access. 2017. 7. 115454 – 115462. doi: 10.1109/ACCESS.2019.2933456
  10. Magnitskii N.A. Universal Bifurcation Chaos Theory and Its New Applications // Mathematics, 2023, 11 (11), 2536. https://doi.org/10.3390/math11112536
  11. Magnitskiy N.A. Teoriya dinamicheskogo khaosa. M.: Lenand. 2011. 320 p.
  12. Magnitskii N.A. Universality of Transition to Chaos in All Kinds of Nonlinear Differential Equations. Chapter in Nonlinearity, Bifurcation and Chaos – Theory and Applications. Rijeca: InTech. 2012. P. 133-174.
  13. Magnitskii N.A. Bifurcation Theory of Dynamical Chaos. Chapter in Chaos Theory. Rijeka: InTech. 2018. P.197-215
  14. Magnitskii N.A. On the nature of hidden attractors in nonlinear autonomous systems of differential equations // Proceedings of ISA RAS. 2023. 73.3. P.16-20. doi: 10.14357/20790279230302

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).