Numerical solution of the boundary value problem for the heat equation with a fractional Caputo derivative
- 作者: Omarova A.G.1
-
隶属关系:
- Dagestan State University
- 期: 卷 74, 编号 2 (2024)
- 页面: 3-10
- 栏目: Dynamical Systems
- URL: https://journals.rcsi.science/2079-0279/article/view/287108
- DOI: https://doi.org/10.14357/20790279240201
- EDN: https://elibrary.ru/CAZNDM
- ID: 287108
如何引用文章
全文:
详细
In a rectangular domain, a nonlocal boundary value problem is studied for the heat equation with a fractional Caputo derivative with variable coefficients. An a priori estimate in differential form is obtained by the method of energy inequalities. A difference scheme is constructed that approximates the boundary value problem with the first order. An analog of the a priori estimate in difference form is obtained. The obtained a priori estimates imply the uniqueness and stability of the solution with respect to the initial data and the right- hand side. The convergence of the difference scheme to the solution of the original problem is proved.
作者简介
Asiyat Omarova
Dagestan State University
编辑信件的主要联系方式.
Email: asya89.89@mail.ru
Post-graduate Student, Department of Applied Mathematics, Faculty of Mathematics and Computer Science
俄罗斯联邦, Makhachkala参考
- Samko S.G., Kilbas A.A., and Marichev O.I. Fractional Integrals and Derivatives, Theory and Application. Gordon and Breach: Yverdon;1993. 976 p.
- Nakhushev A.M. Elements of fractional calculus and their application. Nalchik: 1989. 430 p (In Russ)
- Podlubny I. Fractional differential equations. San Diego: Academic Press; 1999. 339 p.
- Oldman K.B.,Spanier J. The fractional calculus: theory and applications of differentiation and integration to arbitrary order. N.Y.:Academic Press; 1974. 234p.
- Nakhushev A.M. Equations of mathematical biology. Moscow: Vysshaya shkola; 1995. 304 p. (In Russ)
- Beybalaev V.D., Ibavov T.I., Omarova A.G. Numerical study of the nonlinear heat equation with a fractional order derivative Vestnik Dagestanskogo gosudarstvennogo universiteta. 2021;(2):47-53 (In Russ). doi: 10.21779/2542-0321-2021-36-2-47-53
- Beshtokov M.H. Boundary value problems for degenerate and non-degenerate differential cases with nonlocal linear kernel and difference methods for their numerical implementation. Ufimskiy matematicheskiy zhurnal. 2019;11(2): 36-55 (In Russ).
- Beshtokov M.H, Hudalov M.Z. The third boundary value problem for a loaded heat equation with a fractional Caputo derivative. Matematika I matematicheskoye modelirovaniye. 2020;(3):52-64 (In Russ). doi.org/10.24108/mathm.0320.0000222
- Beshtokova Z.V. Numerical method for solving non-local boundary value problems for a multidimensional parabolic equation. Vychislitel’nyye metody i programmirovani ye.2022;23(2):153-171 (In Russ). doi: 10.26089/NumMet.v23r210.
- Shogenova E.M. A priori estimates for the solution of boundary value problems for the fractional order convection-diffusion equation. Vestnik KRAUNTS. Fiz.-mat. Nauki.2018;24(4):54-60 (In Russ). doi: 10.18454/2079-6641-2018-24-4-54-60
- Alikhanov A.A. A priori estimates of solutions to boundary value problems for equations of fractional order. Differentsial’nyye uravneniya.2010;46(5): 658-664 (In Russ).
- Alikhanov A.A. Difference methods for solving boundary value problems for a wave equation with a fractional time derivative. Vestn.Sam.gos. tekhn.un-ta.Ser.Fiz-mat.nauki.2008;17(2): 13-20 (In Russ).
- Kazakova E.M. Difference scheme for fractional order convection-diffusion equation. Vestnik KRAUNTS. Fiz.-mat.nauki. 2021;36(3):146-154 (In Russ).
- Alikhanov A.A. Stability and convergence of difference schemes for boundary value problems of the diffusion equation of fractional . Zhurnal vychislitel’noy matematiki i matematicheskoy fiziki.2016;56(4):572-586 (In Russ). doi: 10.7868/S0044466916040049.
- Ladyzhenskaya O.A. Boundary Value Problems of Mathematical Physics. NewYork: Springer; 1985.409p.
- Omarova A.G. On the stability and convergence of a difference scheme approximating a boundary value problem for a single differential equation with a fractional Caputo derivative. Izvestiya vysshikh uchebnykh zavedeniy. Severo-Kavkazskiy region. Seriya: Yestestvennyye nauki. 2022;(1):23-27 (In Russ). doi: 10.18522/1026-2237-2022-1-23-27
- Samarsky A.A., Gulin A.V. Stability of Difference Schemes. Moscow: Nauka; 1973.415p. (In Russ)
- Alikhanov А.А. Numerical methods of solutions of boundary value problems for the multi-term variable-distributed order diffusion equation. Applied Mathematics and Computation.2015;(268):12-22.
- Andreev V.B. On the Convergence of Difference Schemes Approximating the Second and Third Boundary Value Problems for Elliptic Equations. Zh. Vychisl. Mat. Mat. Fiz..1968;8(6):1218–1231 (In Russ).
- Samarsky A.A. Theory of difference schemes Moscow: Nauka; 1977.656p (In Russ).
补充文件
