Quantitative large-scale study of school student’s academic performance peculiarities during distance education caused by COVID-19
- Authors: Yunusov V.A.1, Gilemzyanov A.F.1, Gafarov F.M.1, Ustin P.N.1, Khalfieva A.R.1
-
Affiliations:
- Kazan Federal University
- Issue: Vol 73, No 1 (2023)
- Pages: 110-120
- Section: Data Mining
- URL: https://journals.rcsi.science/2079-0279/article/view/286887
- DOI: https://doi.org/10.14357/20790279230113
- ID: 286887
Cite item
Full Text
Abstract
The paper presents the large-scale analysis results of the distance learning impact caused by COVID-19 and its influence on school student's academic performance. This multidisciplinary study is based on the large amount of the raw data containing school student’s grades from 2015 till 2021 academic years taken from “Electronic education in Tatarstan Republic” system. The analysis is based on application of BigData and mathematical statistics methods, realized by using Python programming language. Dask framework for parallel cluster-based computation, Pandas library for data manipulation and large-scale analysis data is used. One of the main priorities of this paper is to identify the impact of different educational system’s factors on school student’s academic performance. For that purpose, the quantile regression method was used. This method is widely used for processing a large-scale data of various experiments in modern data science. Quantile regression models are designed to determine conditional quantile functions. Therefore, this method is especially suitable to exam conditional effects at various locations of the outcome distribution: e.g., lower and upper tails. The study-related conditional factors include such factors as student’s marks from previous academic years, types of lessons in which grades were obtained, and various teacher’s parameters such as age, gender and qualification category.
About the authors
V. A. Yunusov
Kazan Federal University
Email: valentin.yunusov@gmail.com
Russian Federation, Kremlyovskaya St, 18, Kazan, Respublika Tatarstan, 420008
A. F. Gilemzyanov
Kazan Federal University
Email: gilemal59@gmail.com
Russian Federation, Kremlyovskaya St, 18, Kazan, Respublika Tatarstan, 420008
F. M. Gafarov
Kazan Federal University
Author for correspondence.
Email: fgafarov@yandex.ru
Russian Federation, Kremlyovskaya St, 18, Kazan, Respublika Tatarstan, 420008
P. N. Ustin
Kazan Federal University
Email: pavust@mail.ru
PhD
Russian Federation, Kremlyovskaya St, 18, Kazan, Respublika Tatarstan, 420008A. R. Khalfieva
Kazan Federal University
Email: khalfieva@inbox.ru
PhD
Russian Federation, Kremlyovskaya St, 18, Kazan, Respublika Tatarstan, 420008References
- Amerise, I.L. Predicting Students Academic Achievement: A Quantile Regression Approach. International Journal of Statistics and Systems 13(1), 9–14 (2018).
- Aspachs O, Durante R, Graziano A, Mestres J, Reynal-Querol M, et al. (2021) Tracking the impact of COVID-19 on economic inequality at high frequency. PLOS ONE 16(3): e0249121. https://doi.org/10.1371/journal.pone.0249121
- Chen, L., Zhou, Y. Quantile regression in big data: A divide and conquer based strategy. Computational Statistics & Data Analysis 144, 106892 (2020). https://doi.org/10.1016/j. csda.2019.106892
- Costanzo, A., Desimoni, M. Beyond the mean estimate: a quantile regression analysis of inequalities in educational outcomes using INVALSI survey data. Large-scale Assess Educ 5, 14 (2017). https://doi.org/10.1186/s40536-017-0048-4
- Gafarov F, Minullin D, Gafarova V. Dask-based efficient clustering of educational texts. CEUR Workshop Proceedings, 3036, 362–376 (2021).
- Gürsakal, Necmi & Murat, Dilek. (2018). Assessment of PISA 2012 Results With Quantile Regression Analysis Within The Context of Inequality In Educational Opportunity. alphanumeric journal. 4. 41-54. https://doi.org/10.17093/ aj.2016.4.2.5000186603 .
- Hao, L., Naiman, D. Quantile regression. Sage, London (2007).
- Hu, A., Li, Ch., Wu, J. Communication-Efficient Modeling with Penalized Quantile Regression for Distributed Data. Complexity, 2021, 6341707 (2021). https://doi.org/10.1155/2021/6341707
- Henriques, J., Caldeira, F., Cruz, T., Simões, P. Combining K-Means and XGBoost Models for Anomaly Detection Using Log Datasets. Electronics 9, 1164 (2020). https://doi.org/10.3390/ electronics9071164
- Koenker, R., Basset, G. Regression quantiles. Econometrica, 46, 33–50 (1978). https://doi. org/10.2307/1913643
- Konstantopoulos S., Li W., Miller S., van der Ploeg A. Using Quantile Regression to Estimate Intervention Effects Beyond the Mean. Educational and Psychological Measurement 79(5), 883–910 (2019). https://doi. org/10.1177/0013164419837321
- Li J., Jiang Y. The Research Trend of Big Data in Education and the Impact of Teacher Psychology on Educational Development During COVID-19: A Systematic Review and Future Perspective. Front. Psychol. 12, 753388 (2021). https://doi.org/10.3389/fpsyg.2021.753388
- Park Y.-E. Uncovering trend-based research insights on teaching and learning in big data. Journal of Big Data 7 (93), 1–17 (2020). https:// doi.org/10.1186/s40537-020-00368-9
- Porter, S.R. Quantile regression: Analyzing changes in distributions instead of means. In: M. B. Paulsen (Ed.), Higher education: Handbook of theory and research, vol. 30, 335–381. Springer, Cham (2015). https://doi. org/10.1007/978-3-319-12835-1_8
- Rangvid, B. School composition effects in Denmark: quantile regression evidence from PISA 2000. Empirical Economics 33, 359–388 (2007). https://doi.org/10.1007/s00181-007-0133-6
- Rocklin M. Dask: Parallel Computation with Blocked algorithms and Task Scheduling. In: Proceedings of the 14th Python in Science Conference, pp. 126–132, (2015) https://doi. org/10.25080/Majora-7b98e3ed-013
- Sorensen, L. “Big Data” in Educational Administration: An Application for Predicting School Dropout Risk. Educational Administration Quarterly 55, 404–446 (2019). https://doi. org/10.1177/0013161X18799439
- Tian, M. A Quantile Regression Analysis of Family Background Factor Effects on Mathematical Achievement. Journal of Data Science 4, 461–478 (2006). https://doi.org/10.6339/ JDS.2006.04(4).283
- Ustin, P., Sabirova E., Alishev T., Gafarov F. Key Factors of Teacher’s Professional Success in the Digital Educational Environment. ARPHA Proceedings 5: 1747-1761 (2022) https:// doi.org/10.3897/ap.5.e1747
- Yu, K. Quantile Regression: Applications and Current Research Areas. Journal of the Royal Statistical Society Series D (The Statistician) 52(3), 331–350 (2003). https://doi. org/10.1111/1467-9884.00363
- Yuan, X., Li, Y., Dong, X., Liu T. Optimal subsampling for composite quantile regression in big data. Statistical Papers (2022). https://doi. org/10.1007/s00362-022-01292-1
Supplementary files
