AutoML: Examining Existing Software Implementations and Determining the Overall Internal Structure of Solutions
- 作者: Popova I.A.1, Gapanyuk Y.E.1, Revunkov G.I.1
-
隶属关系:
- Bauman Moscow State Technical University
- 期: 卷 73, 编号 1 (2023)
- 页面: 43-54
- 栏目: Data Mining
- URL: https://journals.rcsi.science/2079-0279/article/view/286864
- DOI: https://doi.org/10.14357/20790279230106
- ID: 286864
如何引用文章
全文:
详细
The article discusses various software implementations of the process of automating the task of using machine learning to solve the linear regression problem. The internal structure and capabilities of a number of existing and widely used automated machine learning tools such as LightAutoML (LAMA), TPOT, AutoSklearn, H2O AutoML, MLJAR are considered. The capabilities of these software systems have been explored to solve the regression problem on multiple datasets.
作者简介
Inna Popova
Bauman Moscow State Technical University
Email: popovai1@student.bmstu.ru
Graduate student
俄罗斯联邦, 2-nd Baumanskaya, 5, Moscow, 105005Yuriy Gapanyuk
Bauman Moscow State Technical University
编辑信件的主要联系方式.
Email: gapyu@bmstu.ru
Associate professor
俄罗斯联邦, 2-nd Baumanskaya, 5, Moscow, 105005Georgiy Revunkov
Bauman Moscow State Technical University
Email: revunkov@bmstu.ru
Associate professor
俄罗斯联邦, 2-nd Baumanskaya, 5, Moscow, 105005参考
- Nagarajah, T., Poravi, G. A Review on Automated Machine Learning (AutoML) Systems. In: 2019 IEEE 5th International Conference for Convergence in Technology (I2CT), pp. 1–6. Pune, India (2019). https://doi.org/10.1109/I2CT45611.2019.9033810
- Bahri, M., Salutari, F., Putina, A. et al. AutoML: state of the art with a focus on anomaly detection, challenges, and research directions. Int J Data Sci Anal (2022). https://doi.org/10.1007/s41060-022-00309-0
- Karmaker, S., Hassan, M.M., Smith, M.J., Xu, L., Zhai, C., Veeramachaneni, K. AutoML to Date and Beyond: Challenges and Opportunities. ACM Computing Surveys (CSUR) 54, 1–36 (2022)
- He X., Zhao K., Chu X. AutoML: A survey of the state-of-the-art. Knowl. Based Syst., 212, 106622. https://doi.org/10.1016/j.knosys.2020.106622
- Escalante, H.J. Automated Machine Learning – a brief review at the end of the early years. arXiv:2008.08516. https://doi.org/10.48550/ arXiv.2008.08516
- Bahri, M., Salutari, F., Putina, A., Sozio, M. AutoML: state of the art with a focus on anomaly detection, challenges, and research directions. International Journal of Data Science and Analytics, Springer Verlag, 2022. https://doi. org/10.1007/s41060-022-00309-0
- Koroteev, M.V. Review of some modern trends in machine learning technology. E-Management 1(1), 26–35 (2018)
- Feurer, M., Eggensperger, K., Falkner, S., Lindauer, M.T., Hutter, F. Practical Automated Machine Learning for the AutoML Challenge 2018. In: International Workshop on Automatic Machine Learning at ICML, pp. 1189-1232 (2018)
- Car Dekho Data, https://www.kaggle.com/ datasets/shindenikhil/car-dekho-data. Last accessed 12 December 2022
- Combined Cycle Power Plant Dataset, https:// archive.ics.uci.edu/ ml/ datasets/ Combined+Cycle+Power+Plant. Last accessed 12 December 2022
- LightAutoML – Automatic model creation framework, https://github.com/sb-ailab/ LightAutoML. Last accessed 12 December 2022
- TPOT – A Python Automated Machine Learning tool, https://github.com/EpistasisLab/tpot. Last accessed 12 December 2022
- Auto-Sklearn – An automated machine learning toolkit, https://github.com/automl/auto-sklearn. Last accessed 12 December 2022
- H2O AutoML – Open-Source Automated Machine Learning, https://h2o.ai/platform/h2o-automl/. Last accessed 12 December 2022
- MLJAR – Automate your Machine Learning pipeline, https://mljar.com/. Last accessed 12 December 2022
- Chen, Yi-Wei, Qingquan Song, and Xia Hu.: Techniques for automated machine learning. ACM SIGKDD Explorations Newsletter, 35-50 (2021).
- Elshawi, Radwa, Mohamed Maher, and Sherif Sakr: Automated machine learning: State-ofthe-art and open challenges. arXiv preprint arXiv:1906.02287 (2019).
- Vakhrushev, Anton, et al. LightAutoML: AutoML Solution for a Large Financial Services Ecosystem. arXiv preprint arXiv:2109.01528 (2021).
补充文件
