Impact of ice regime of small and medium-sized rivers in the permafrost zone on the formation of their riverbeds (the case study of Central Yakutia)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In small and medium-sized rivers of the permafrost zone, ice formation lasts for most of the year, and the ice cover often grows to the bottom along the entire length or in some of its sections. However, its impact on the morphology and dynamics of the riverbed, runoff, sediment, dissolved substances, and surrounding deposits is still unexplored. Observations on the formation and destruction of ice cover, freezing and thawing of riverbed sediments, and water turbidity on three small and medium-sized rivers were made in Central Yakutia. The data obtained from hydrographic stations of the Yakutsk Hydromet Office in 2008–2022 were used for our analysis. The character of the river’s freezing, whether the ice cover grows to the bottom along the entire length or the river or only in certain areas, depends on its morphology. Even in the absence of water sources in winter, lenses of unfrozen water still remain in the deepest (more than 1.5 m) sections of rivers, such as pools of beaded channels or meandering rivers. Local tallks up to 4 m thick are preserved under sections of the river with floating ice, while under sections of the rivers with bedfast ice, the sediments completely freeze in winter. On rivers with bedfast ice a significant part of the snowmelt runoff passes over the ice cover. The presence of ice in the riverbed promotes rising of water levels and increased water flow rates, but at the same time, it protects the sediments on the bottom and banks of the river from thawing and subsequent erosion. The peak of water discharges during the spring flood on the smallest rivers passes over the ice; but as the size of the river increases, the peak of water discharge shifts to later dates, so it occurs on the ice-free riverbed. Thus, the effect of spring floods on the erosion of the bed and banks of rivers with bedfast ice is reduced due to the energy expenditure of the water stream in the first phase of the flood on the destruction of ice filling the channel and the thawing of the bed and banks material. This phenomenon is more pronounced on the smallest rivers, which have lower thermal energy, than on larger ones.

About the authors

A. M. Tarbeeva

Lomonosov Moscow State University

Email: amtarbeeva@yandex.ru
Moscow, Russia

V. S. Efremov

Melnikov Permafrost Institute SB RAS

Yakutsk, Russia

L. S. Lebedeva

Melnikov Permafrost Institute SB RAS

Yakutsk, Russia

V. V. Shamov

Melnikov Permafrost Institute SB RAS; Pacific Institute of Geography, FEB RAS

Yakutsk, Russia; Vladivostok, Russia

I. V. Krylenko

Lomonosov Moscow State University

Moscow, Russia

References

  1. Автоматизированная информационная система государственного мониторинга водных объектов (АИС ГМВО) // Электронный ресурс. https://gmvo.skniivh.ru/ (Дата обращения 03.04.2025).
  2. Аржакова С.К. Зимний сток рек криолитозоны России. Санкт-Петербург: Гос. гидрометеорол. ун-т, 2001. 209 с.
  3. Арэ Ф.Э. Основы прогноза термоабразии берегов. Новосибирск: Наука, 1985. 172 с.
  4. Варламов С.П., Скачков Ю.Б., Скрябин П.Н. Результаты 35-летних мониторинговых исследований криолитозоны на стационаре “Чабыда” (Центральная Якутия) // Наука и образование. 2017. № 2. С. 34—40.
  5. Горохов А.Н., Федоров А.Н. Современные тенденции изменения климата в Якутии // География и природные ресурсы. 2018. № 2. С. 111—119. https://doi.org/110.1134/S1875372818020087
  6. Лебедева Л.С., Баишев Н.Е., Павлова Н.А., Ефремов В.С., Огоноров В.В., Тарбеева А.М. Температура пород в слое годовых теплооборотов в районе распространения надмерзлотных таликов в Центральной Якутии // Криосфера Земли. 2023. Т. 27. № 2. С. 3—15. https://doi.org/110.15372/KZ20230201
  7. Лебедева Л.С., Шамов В.В., Христофоров И.И., Павлова Н.А., Данилов К.П. Роль надмерзлотных субаэральных водоносных таликов в питании двух малых притоков реки Лены по данным натурных наблюдений // Криосфера Земли. 2025. Т. 29. № 1. С. 37—51. https://doi.org/110.15372/KZ20250104
  8. Маккавеев Н.И. Сток и русловые процессы. М.: Изд-во МГУ, 1971. 115 с.
  9. Максимов Г.Т., Григорьев М.Н., Большиянов Д.Ю. Формирование и распространение многолетней мерзлоты и таликов под руслами проток в дельте р. Лена // Природные ресурсы Арктики и Субарктики. 2022. Т. 27. № 3. С. 370–380. https://doi.org/10.31242/2618-9712-2022-27-3-370-380
  10. Мерзлотно-ландшафтная карта Республики Саха (Якутия). Масштаб 1:1500000. / Ред. М.Н. Железняк. Якутск: ИМЗ СО РАН, 2018. 2 с.
  11. Тарбеева А.М., Лебедева Л.С., Ефремов В.С., Крыленко И.В., Сурков В.В., Шамов В.В., Лущенко Т.Н. Условия и процессы формирования чётковидной формы русла малой реки криолитозоны (на примере р. Шестаковки, Центральная Якутия) // Криосфера Земли. 2019. Т. 23. № 2. С. 38–49.
  12. Тарбеева А.М., Сурков В.В. Чётковидные русла малых рек зоны многолетней мерзлоты // География и природные ресурсы. 2013. Т. 34. № 3. С. 216–220.
  13. Филиппов В.Е., Васильев И.С. Перигиляциальный рельеф Лено-Вилюйского междуречья // География и природные ресурсы. 2006. № 4. С. 82–86.
  14. Чеботарев А.И. Гидрологический словарь. Ленинград: Гидрометеоиздат, 1978. 308 с.
  15. Чижова А.Н. Формирование ледяного покрова и пространственное распределение его толщины. Л.: Гидрометеоиздат. 1990. 128 с.
  16. Agafonova S.A., Vasilenko A.N. Hazardous ice phenomena in rivers of the Russian arctic zone under current climate conditions and the safety of water use // Geography, Environment, Sustainability. 2020. V. 13. № 2. P. 43–51. https://doi.org/10.24057/2071-9388-2020-12
  17. Arp C.D., Whitman M., Jones B., Grosse G., Gaglioti B., Heim K. Distribution and biophysical processes of beaded streams in Arctic permafrost landscapes // Biogeosciences. 2015. № 12 (1). P. 29–47.
  18. Best H., McNamara J.P., Liberty L. Association of Ice and River Channel Morphology Determined Using Ground-penetrating Radar in the Kuparuk River, Alaska // Arctic, Antarctic and Alpine Research. 2005. V. 37. № 2. P. 157–162.
  19. Costard F., Gautier F., Brunstein D., Hammadi J., Fedorov A., Yang D., Duperyat L. Impact of the global warming on the fluvial thermal erosion over the Lena River in central Siberia // Geophys. Research Letters. 2007. V. 34. L14501 p. http://dx.doi.org/10.1029/2007GL030212
  20. Geyman E.C., Douglas M.M., Avouac J.P., Lamb M.P. Permafrost slows Arctic riverbank erosion // Nature. 2024. V. 634. P. 359–365. https://doi.org/10.1038/s41586-024-07978-w
  21. Harlan M.E., Gleason C.J., Flores J.A., Langhorst T.M., Roy S. Mapping and characterizing Arctic beaded streams through high resolution satellite imagery // Remote Sensing of Environment. 2023. V. 285. 113378 p. https://doi.org/10.1016/j.rse.2022.113378
  22. Kanevskiy M., Shur Y., Strauss J., Jorgenson T., Fortier D., Stephani E., Vasiliev A. Patterns and rates of riverbank erosion involving ice-rich permafrost (yedoma) in northern Alaska // Geomorphology. 2016. V. 253. P. 370–384. http://dx.doi.org/10.1016/j.geomorph.2015.10.023
  23. Prowse T.D., Bonsal B.R., Duguay C.R., Lacroix M.P. River-ice break-up/freeze-up: a review of climatic drivers, historical trends and future predictions // Annals of Glaciology. 2007. N 46. P. 443–451. https://doi.org/10.3189/172756407782871431
  24. Rowland J.C., Schwenk J.P., Shelef E., Muss J., Ahrens D., Stauffer S., Pilliouras A., Crosby B., Chadwick A., Douglas M.M., Kemeny P.C., Lamb M.P., Li G.K., Vulis L. Scale-dependent influence of permafrost on riverbank erosion rates // Journal of Geophysical Research: Earth Surface. 2023. V. 128. e2023JF007101 p. https://doi.org/10.1029/2023JF007101
  25. Scott K.M. Effects of Permafrost on Stream Channel Behavior in Arctic Alaska // Geological Survey Professional Paper 1068. United States Government Printing Office, Washington, USA, 1978. 19 p.
  26. Tananaev N. Hydrological and sedimentary controls over fluvial thermal erosion, the Lena River, central Yakutia // Geomorphology. 2016. V. 253. P. 524–533. https://doi.org/10.1016/j.geomorph.2015.11.009
  27. Tananaev N.I., Makarieva O.M., Lebedeva L.S. Trends in annual and extreme flows in the Lena River basin, Northern Eurasia // Geophysical Research Letters. 2016. V. 43 № 20. P. 10764–10772. https://doi.org/10.1002/2016GL070796
  28. Vandermause R., Harvey M., Zevenbergen L., Ettena R. River-ice effects on bank erosion along the middle segment of the Susitna River, Alaska // Cold Regions Science and Technology. 2021. V. 85. 103239 p. https://doi.org/10.1016/j.coldregions.2021.103239
  29. Walker H.J., Hudson P.F. Hydrologic and geomorphic processes in the Colville River delta, Alaska // Geomorphology. 2003. V. 56. P. 291–303. https://doi.org/10.1016/S0169-555X(03)00157-0
  30. Wolman M.G., Miller J.P. Magnitude and frequency of forces in geomorphic processes // Journ. of Geology. 1960. V. 68. № 1. P. 54–74.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).