Changes in the Ice Cover of the Russian Arctic Seas in the 21st Century Based on the Results of Climate Models of the CMIP6 Project

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Ice cover is one of the main parameters describing the state of the ice cover of various water areas. The simplicity of calculation determines the frequency of using the indicator in research work both for reading the seasonal course and interannual changes in the state of the ice cover, and for verifying model data or reanalysis data. In this paper, ice cover is calculated based on five data sources. The comparison is based on satellite data from the NSIDC DAAC archives October 26, 1978 – March 31, 2023; spatial resolution is 25×25 km, temporal resolution is 1 day; the data were collected by the SMMR, SSM/I, SSMI/S sensors on the DMSP program satellites, as well as the Nimbus-7 satellite) and OSISAF (product code OSI-401-d; March 1, 2005 – present; spatial resolution is 10×10 km, temporal resolution is 1 day; the data were collected by the SSMI/S sensor on the DMSP program satellites). Model data from the international CMIP (Coupled Model Intercomparison Project) project are used for comparison and verification. Of the more than 40 models of the sixth phase of the project, two were selected that provided the necessary data and were suitable in terms of spatial and temporal resolution – MPI-ESMI-2-HR and AWI-CM-1-1-MR of the Max Planck Institute and the Alfred Wegener Institute, respectively. For all obtained ice coverage series, the mean, standard deviation, range, correlation intervals, trend coefficients and standard error were estimated relative to the NSIDC series for the data intersection period of 19.09.2016–31.06.2023 in each of the Russian Arctic seas, as well as for the water area as a whole. Using the calculated statistical characteristics, satellite data on ice cover were compared with the results of modeling in accordance with different socioeconomic trajectories (Shared Socioeconomic Pathways, SSP) for both models, the quality of ice cover modeling was assessed, and scenarios were selected that most closely matched the satellite data for both the entire Russian Arctic water area and for individual seas. Based on the assumed optimal scenarios, possible changes in ice content were predicted.

About the authors

S. V. Tsedrik

Arctic and Antarctic Research Institute; Saint Petersburg State University

Email: sofikoise@gmail.com
Saint Petersburg, Russia; Saint Petersburg, Russia

R. I. May

Saint Petersburg State University; Krylov Scientific Center

Saint Petersburg, Russia; Saint Petersburg, Russia

References

  1. Вязигина Н.А., Тимохов Л.А., Егоров Е.С., Юлин А.В. Информативность гидрометеорологических и астрогеофизических факторов в задаче описания межгодовых колебаний ледовитости Гренландского моря // Лёд и Снег. 2021. Т. 61. № 3. С. 431–444. https://doi.org/10.31857/S2076673421030099
  2. Крашенинникова С.Б., Крашенинникова М.А. Причины и особенности многолетней изменчивости ледовитости Баренцева моря // Лёд и Снег. 2019. Т. 59 № 1. С. 112–122. https://doi.org/10.15356/2076-6734-2019-1-112-122
  3. Лис Н.А., Чернявская Е.А., Миронов Е.У., Тимохов Л.А., Егорова Е.С. Информативность факторов, формирующих долгопериодные колебания ледовитости отдельных районов Баренцева моря // Российская Арктика. 2023. Т. 5. № 2. С. 17–32.
  4. Май Р.И., Гузенко Р.Б., Таровик О.В., Топаж А.Г., Юлин А.В. Стохастическое моделирование полей сплочённости ледяного покрова для оценки условий плавания по трассе Северного морского пути // Лёд и Снег. 2022. Т. 62. № 1. С. 125–140.
  5. Макаров А.С., Миронов Е.У., Иванов В.В., Юлин А.В. Ледовые условия морей Российской Арктики в связи с происходящими климатическими изменениями и особенности эволюции ледяного покрова в 2021 году // Океанология. 2022. Т. 62. № 6. С. 845–856. https://doi.org/10.31857/S0030157422050124
  6. Матвеева Т.А., Семенов В.А., Астафьева Е.С. Ледовитость арктических морей и её связь с приземной температурой воздуха в Северном полушарии // Лёд и Снег. 2020. Т. 60. № 1. С. 134–148. https://doi.org/10.31857/S2076673421010029
  7. Романюк В.А., Журавлев Г.Г. Сравнительная оценка и сопоставимость спутниковых и авиационных данных по ледовитости Охотского моря // Лёд и Снег. 2013. Т. 53. № 4. С. 113–118. https://doi.org/10.15356/2076-6734-2013-4-113-118
  8. Холопцев А.В., Кононова Н.К. Изменение ледовитости зимой и вариации поля атмосферного давления в Арктике // Сложные системы. 2017. Т. 22. № 1. С. 15–35.
  9. Шапкин Б.С., Рубченя А.В., Иванов Б.В., Ревина А.Д., Богрянцев М.В. Многолетние изменения ледовитости в районе архипелагов Шпицберген и Земля Франца-Иосифа // Лёд и Снег. 2021. Т. 61. № 1. С. 128–136. https://doi.org/10.31857/S2076673421010076
  10. Chen R., Dai G., Liu R., Wang L. Seasonal influence of the atmosphere and ocean on the fall sea ice extent in the Barents-Kara Seas // Journal of Geophysical Research: Atmospheres. 2021. № 126. e2021JD035144. https://doi.org/10.1029/2021JD035144
  11. Latonin M., Bashmachnikov I., Radchenko I., Gnatiuk N., Bobylev L., Pettersson L. Meridional Oceanic and Atmospheric Heat Fluxes at the Entrance to the Atlantic Sector of the Arctic: Verification of CMIP6 Models and Climate Projections Based on the Selected Sub-Ensembles // Russian Journal of Earth Sciences. 2024. № 24. ES4007. https://doi.org/10.2205/2024es000917
  12. Lopes F., Courtillot V., Gibert D., Mouël J. On the annual and semi-annual components of variations in extent of Arctic and Antarctic sea-ice // Geosciences. 2023. V. 13. № 1. 21. https://doi.org/10.3390/geosciences13010021
  13. Mouël J., Lopes F., Courtillot V. A strong link between variations in sea-ice extent and global atmospheric pressure? // The Cryosphere Discussions. 2021. P. 1–28.
  14. Riahi K., Vuurenb D., Krieglerc E., Edmondsd J., O’Neille B.C., Fujimorif S., Bauerc N., Calvin K., Dellink R., Fricko O., Lutza W., Popp A., Cuaresma J.C., Samir K.C., Leimbach M., Jiange L., Kramb T., Rao S., Emmerling S., Ebi K., Hasegawaf T., Havlik P., Humpenöderc F., Da Silva L.A., Smith S., Stehfestb E., Bosetti V., Eom J., Gernaatb D., Masuif T., Rogel J., Streflerc J., Drouet L., Kreya V., Ludererc G., Harmsen M., Takahashif K., Baumstarkc L., Doelmanb J.C., Kainuma M., Klimont Z., Marangoni G., Lotze-Campen H., Obersteinera M., Tabeau A., Tavoni M. The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview // Global Environmental Change. 2017. V. 42. P. 153–168.
  15. Song M. Change of Arctic sea-ice volume and its relationship with sea-ice extent in CMIP5 simulations // Atmospheric and Oceanic Science Letters. 2016. V. 9. № 1. P. 22–30. https://doi.org/10.1080/16742834.2015.1126153
  16. Sorteberg A., Kvingedal B. Atmospheric Forcing on the Barents Sea Winter Ice Extent // Journal of Climate. 2006. V. 19. P. 4772–4784.
  17. Wernecke A., Notz D., Kern S., Lavergne T. Estimating the uncertainty of sea-ice area and sea-ice extent from satellite retrievals // The Cryosphere. 2024. № 18. P. 2473–2486. https://doi.org/10.5194/tc-18-2473-2024

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).