Role of turbulent heat exchange in the heat balance structure of glaciers of the central Spitsbergen: the case of Aldegondabreen
- Authors: Prokhorova U.V.1, Barskov K.V.2, Terekhov A.V.1, Chechin D.G.2, Repina I.A.2,3, Ivanov B.V.1,4, Varentsov M.I.2,3, Artamonov A.Y.2
-
Affiliations:
- Arctic and Antarctic Research Institute
- Institute of Atmospheric Physics named after A.M. Obukhov, RAS
- Lomonosov Moscow State University
- Saint Petersburg State University
- Issue: Vol 64, No 4 (2024)
- Pages: 481-496
- Section: Glaciers and ice sheets
- URL: https://journals.rcsi.science/2076-6734/article/view/282780
- DOI: https://doi.org/10.31857/S2076673424040011
- EDN: https://elibrary.ru/HUGVVA
- ID: 282780
Cite item
Abstract
The results of verification of the aerodynamic method for calculating turbulent air heat fluxes between the glacier and the atmosphere using the eddy covariance method are presented. The experiment was conducted on Aldegondabreen, Svalbard, in August 2022. Comparison of the methods showed high agreement between the fluxes estimated by the two methods (R2 = 0.7), but the aerodynamic method underestimated the flux (mean error 14%). The eddy covariance method allowed us to estimate the aerodynamic roughness length parameter for Aldegondabreen z0m = 0.8 mm, and the thermal roughness length z0h = 0.08 mm. The uncertainty analysis of the aerodynamic method revealed systematic errors related to the wind flow direction. The coefficient of proportionality was 0.67–0.70 for wind direction along the glacier slope and 0.98 for wind direction perpendicular to the glacier slope. Mean values of heat fluxes during the ablation season for the period 1991–2020 were calculated for Aldegondabreen: the short-wave balance is 72.6–113.8 W∙m−2; the long-wave balance is 14.5 W∙m−2; the turbulent fluxes of sensible and latent heat determined by the aerodynamic method are 20.5 and about 1 W∙m−2, respectively. Thus, even allowing for a systematic method error of 14% (~3 W∙m–2), the total turbulent heat transfer value of 24.5 W∙m–2 was lower than the mean estimates for the short-wave balance.
Keywords
About the authors
U. V. Prokhorova
Arctic and Antarctic Research Institute
Author for correspondence.
Email: uvprokhorova@aari.ru
Russian Federation, Saint Petersburg
K. V. Barskov
Institute of Atmospheric Physics named after A.M. Obukhov, RAS
Email: uvprokhorova@aari.ru
Russian Federation, Moscow
A. V. Terekhov
Arctic and Antarctic Research Institute
Email: uvprokhorova@aari.ru
Russian Federation, Saint Petersburg
D. G. Chechin
Institute of Atmospheric Physics named after A.M. Obukhov, RAS
Email: uvprokhorova@aari.ru
Russian Federation, Moscow
I. A. Repina
Institute of Atmospheric Physics named after A.M. Obukhov, RAS; Lomonosov Moscow State University
Email: uvprokhorova@aari.ru
Research Computing Center
Russian Federation, Moscow; MoscowB. V. Ivanov
Arctic and Antarctic Research Institute; Saint Petersburg State University
Email: uvprokhorova@aari.ru
Russian Federation, Saint Petersburg; Saint Petersburg
M. I. Varentsov
Institute of Atmospheric Physics named after A.M. Obukhov, RAS; Lomonosov Moscow State University
Email: uvprokhorova@aari.ru
Research Computing Center
Russian Federation, Moscow; MoscowA. Yu. Artamonov
Institute of Atmospheric Physics named after A.M. Obukhov, RAS
Email: uvprokhorova@aari.ru
Russian Federation, Moscow
References
- All-Russian Research Institute of Hydrometeorological Information World Data Center: http://meteo.ru (Meteo Publications. Retrieved from: http://meteo.ru/data/ (Last access: 06 April 2024).
- Voloshina A.P. Teplovoi balans poverhnosti visokogornikh lednikov v letnii period: na primere Elbrusa. Heat Balance of a Surface of High-mountain Glaciers During Summer Period: Case Study of Elbrus. Moscow: Nauka, 1966: 150 p. [In Russian].
- Voloshina A.P. Meteorology of mountain glaciers. Materialy Glyatsiologicheskikh Issledovaniy. Data of Glaciological Studies. 2001, 92: 3–138.
- Izuchenie meteorologicheskogo rezhima i klimaticheskih izmenenij v rajone arhipelaga Shpicbergen: otchet o nauchno-issledovatel’skoj rabote (itogovyj otchyot za 2008 god). Study of the meteorological regime and climate changes in the area of the Spitsbergen archipelago: report on research work (final report for 2008). Research report. St. Petersburg, 2008: 191 p. [In Russian].
- Monin A.S., Obukhov A.M. Dimensionless characteristics of turbulence in the atmospheric surface layer. Doklady Akademii Nauk SSSR. Reports of the Academy of Sciences. 1953, 93 (2): 223–226 [In Russian].
- Nastavlenie gidrometeorologicheskim stanciyam i postam. Instructions for hydrometeorological stations and posts.Vyp. 5, Ch. I. Aktinometricheskie nablyudeniya na stanciyah. 1996 [In Russian].
- Prokhorova U.V., Terekhov A.V., Demidov V.E., Verku-lich S.R., Ivanov B.V. Intra-Annual Variability of the Surface Ablation of the Aldegondabreen Glacier (Spitsbergen). Led i Sneg. Ice and Snow. 2023, 63 (2): 214–224 [In Russian]. https://doi.org/10.31857/S2076673423020138
- Repina I.A. Metody opredeleniya turbulentnyh potokov nad morskoj poverhnost’yu. Methods for determining turbulent flows over the sea surface. Moscow: Space Research Institute of the Russian Academy of Sciences, 2007: 36 p. [In Russian].
- Repina I.A. The sea surface and the katabatic flow interaction in the fjords of Spitsbergen. Sovremennye problemy distantsionnogo zondirovaniya zemli iz kosmosa. Current problems in remote sensing of the earth from space. 2018, 15 (5): 217–228. [In Russian].
- Repina I.A., Ivanov B.V., Kuznetsov R.D. Measurement of the katabatic wind turbulent structure in the Spitsbergen coastal zone. Sovremennye problemy distantsionnogo zondirovaniya zemli iz kosmosa. Current problems in remote sensing of the earth from space. 2009, 6 (2): 180–187. [In Russian].
- Retz E.P., Frolova N.L., Popovnin V.V. Modeling the melting of the surface of a mountain glacier. Led i Sneg. Ice and Snow. 2014, 1 (4): 24–31. [In Russian].
- Rukovodstvo gidrometeorologicheskim stanciyam po aktinometricheskim nablyudeniyam. Management of hydrometeorological stations on actinometric observations Leningrad: Gidrometeoizdat. 1971: 123 p. [In Russian].
- Svyaschennikov P.N., Ragulina G.A. Estimation of surface ablation of Aldegonda glacier, Svalbard archipelago. Priroda shelfov i arkhipelagov evropeiskoi Arktiki. Kompleksnie issledovaniya prirodi Shpitsbergena. Nature of shelves and archipelagos of the European Arctic. Comprehensive studies of Svalbard nature. Moscow: GEOS, 2010: 469–474. [in Russian].
- Toropov P.A., Shestakova A.A., Smirnov A.M., Popovnin V.V. Assessment of the components of the heat balance of the Dzhankuat glacier (Central Caucasus) during the ablation period in 2007–2015. Kriosfera Zemli. Cryosphere of the Earth. 2018, XXII (4): 42–54. [In Russian].
- Toropov P.A., Debol’skii A.V., Polyukhov A.A., Shestakova A.A., Popovnin V.V., Drozdov E.D. Oerlemans Minimal Model as a Possible Instrument for Describing Mountain Glaciation in Earth System Models. Vodnye resursy. Water Resources. 2023, 50 (5): 524–537 .[In Russian].
- Arnold N.S., Rees W.G., Hodson A.J., Kohler J. Topographic controls on the surface energy balance of a high Arctic valley glacier. Journ. of Geophys. Research: Earth Surface. 2006, 111 (F2).
- Barskov K., Stepanenko V., Repina I., Artamonov A., Gavrikov A. Two regimes of turbulent fluxes above a frozen small lake surrounded by forest. Boundary-Layer Meteorology. 2019, 173: 311–320.
- Barskov K.V., Chernyshev R.V., Stepanenko V.M., Repi-na I.A., Artamonov A.Y., Guseva S.P., Gavrikov A.V. Experimental study of heat and momentum exchange between a forest lake and the atmosphere in winter. IOP Conference Series: Earth and Environmental Science. IOP Publishing. 2017, 96 (1): 012003.
- Dahlke S., Hughes N.E., Wagner P.M., Gerland S., Wawrzyniak T., Ivanov B., Maturilli M. The observed recent surface air temperature development across Svalbard and concurring footprints in local sea ice cover. Intern. Journ. of Climatology. 2020, 40 (12): 5246–5265.
- Foken T., Wichura B. Tools for quality assessment of surface-based flux measurements. Agricultural and forest meteorology. 1996, 78 (1–2): 83–105.
- Foken T. Micrometeorology, Springer, Heidelberg, 2017: 362 p.
- Geyman E.C., JJ van Pelt W., Maloof A.C., Aas H.F., Koh-ler J. Historical glacier change on Svalbard predicts doubling of mass loss by 2100. Nature. 2022, 601 (7893): 374–379.
- Gryanik V.M., Lüpkes C., Grachev A., Sidorenko D. New modified and extended stability functions for the stable boundary layer based on SHEBA and parametrizations of bulk transfer coefficients for climate models. Journ. of the Atmospheric Sciences. 2020, 77 (8): 2687–2716.
- Hanssen-Bauer I., Førland E.J., Hisdal H., Mayer S., Sandø A.B., Sorteberg A. Climate in Svalbard 2100, A knowledge base for climate adaptation, 2019: 470 p.
- Hock R. A distributed temperature-index ice-and snowmelt model including potential direct solar radiation. Journ. of glaciology. 1999, 45 (149): 101–111. https://doi.org/10.3189/S0022143000003087
- Hock R., Holmgren B. A distributed surface energy-balance model for complex topography and its application to Storglaciären, Sweden. Journal of Glaciology. 2005, 51 (172): 25–36.
- Ivanov V., Varentsov M., Matveeva T., Repina I., Artamo-nov A., Khavina E. Arctic Sea Ice Decline in the 2010s: The Increasing Role of the Ocean. Air Heat Exchange in the Late Summer. Atmosphere. 2019, 10 (4): 184.
- Isaksen K., Nordli Ø., Førland E.J., Łupikasza E., Eastwood S., Niedźwiedź T. Recent warming on Spitsbergen. Influence of atmospheric circulation and sea ice cover. Journ. of Geophysical Research: Atmospheres. 2016, 121 (20): 11913–11931. https://doi.org/10.1002/2016JD025606
- Karner F.F., Obleitner T., Krismer J., Kohler, Greuell W. A decade of energy and mass balance investigations on the glacier Kongsvegen, Svalbard. Journ. of Geophysical Research: Atmospheres. 2013, 118: 3986–4000. https://doi.org/10.1029/2012JD018342
- Lang C., Fettweis X., Erpicum M. Future climate and surface mass balance of Svalbard glaciers in an RCP8. 5 climate scenario: a study with the regional climate model MAR forced by MIROC5. The Cryosphere. 2015, 9 (3): 945–956.
- Mölg T., Hardy D.R. Ablation and associated energy balance of a horizontal glacier surface on Kilimanjaro. Journ. of Geophysical Research: Atmospheres. 2004, 109 (D16).
- Möller M., Möller R. Modeling glacier‐surface albedo across Svalbard for the 1979–2015 period: The HiRSvaC500‐α data set. Journ. of Advances in Modeling Earth Systems. 2017, 9 (1): 404–422.
- Moore G.W.K., Schweiger A., Zhang J., Steele M. Collapse of the 2017 winter Beaufort High: A response to thinning sea ice? Geophys. Research Letters. 2018, 45 (6): 2860–2869.
- Munro D.S. Comparison of melt energy computations and ablatometer measurements on melting ice and snow. Arctic and Alpine Research. 1990. 22 (2): 153–162.
- Noël B., Jakobs C.L., Van Pelt, W.J.J., Lhermitte S., Wou-ters B., Kohler J., van den Broeke M.R. Low elevation of Svalbard glaciers drives high mass loss variability. Nature Communications. 2020, 11 (1): 4597.
- Paterson W.S.B. Physics of glaciers. Butterworth-Heinemann, 1994: 488 p.
- Pernov J.B., Gros‐Daillon J., Schmale J. Comparison of selected surface level ERA5 variables against in‐situ observations in the continental Arctic // Quarterly Journ. of the Royal Meteorological Society. 2024 (in print).
- Prokhorova U., Terekhov A., Ivanov B., Demidov V. Heat balance of a low-elevated Svalbard glacier during the ablation season: A case study of Aldegondabreen. Arctic, Antarctic, and Alpine Research. 2023, 55 (1): 2190057. https://doi.org/10.1080/15230430.2023.2190057
- Rantanen M., Karpechko A.Y., Lipponen A., Nordling K., Hyvärinen O., Ruosteenoja K., Laaksonen A. The Arctic has warmed nearly four times faster than the globe since 1979. Communications Earth & Environment. 2022, 3 (1): 168.
- Schuler T.V., Kohler J., Elagina N., Hagen J.O.M., Hod-son A.J., Jania J.A.,Van Pelt W.J. Reconciling Svalbard glacier mass balance. Frontiers in Earth Science. 2020, 8: 523648.
- Shestakova A.A., Chechin D.G., Lüpkes C., Hartmann J., Maturilli M. The foehn effect during easterly flow over Svalbard. Atmospheric Chemistry and Physics. 2022, 22 (2): 1529–1548.
- Slater T., Lawrence I. R., Otosaka I.N., Shepherd A., Gourmelen N., Jakob L., Nienow P. Earth’s ice imbalance // The Cryosphere. 2021, 15 (1): 233–246.
- Terekhov A., Prokhorova U., Verkulich S., Demidov V., Sidorova O., Anisimov M., Romashova K. Two decades of mass-balance observations on Aldegondabreen, Spitsbergen: interannual variability and sensitivity to climate change. Annals of Glaciology. 2023, 1–11.
- van Pelt W.J.J., Oerlemans J., Reijmer C.H., Pohjola V.A., Pettersson R., van Angelen J.H. Simulating melt, runoff and refreezing on Nordenskiöldbreen, Svalbard, using a coupled snow and energy balance model. The Cryosphere. 2012, 6: 641–659. https://doi.org/10.5194/tc-6-641-2012
- Wheler B.A., Flowers G.E. Glacier subsurface heat-flux characterizations for energy-balance modelling in the Donjek Range, southwest Yukon, Canada. Journ. of Glaciology. 2011, 57 (201): 121–133.
- Zhou L.B., Zhu J.H., Kong L.L. The observed near-surface energy exchange processes over Arctic glacier in summer. Journ. of Meteorological Research. 2024, 38 (3), 1–8. https://doi.org/10.1007/S13351-024-3158-2
- Zou X., Ding M., Sun W., Yang D., Liu W., Huai B., Jin S., Xiao C. The surface energy balance of Austre Lovénbreen, Svalbard, during the ablation period in 2014. Polar Research. 2021, 40.
Supplementary files
