Changes in water regime in the high-mountain region of the Terek River (North Caucasus) in connection with climate change and degradation of glaciation

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In this study, we adapted the ECOMAG model of the runoff formation for analysis of the Terek River basin using comprehensive hydrometeorological information as well as data on soils, landscape, and glaciation. To take account of regional characteristics of the glaciation, the additional ice module was used with the model. This improvement has resulted in a satisfactory agreement between the modeled runoff hydrographs and the observed ones. In our simulations we used the updated glacier cover predictions from the- global glaciological model GloGEMflowdebris together with regional climate projections from the CORDEX experiment to determine possible future changes in the Terek River flow in the 21st century. The results show that the runoff will change between −2% and +5% according to the RCP2.6 scenario, and from −8% to +14% in the RCP8.5 scenario. The directedness of the runoff changes in particular subbasins of the River will essentially depend on the altitude position of the snow and glacier feeding zones, that is responsible for the intensity of their degradation. Thus, in the RCP8.5 scenario, the flow of the Chegem River will begin to decrease significantly in the second half of the 21st century. In contrast, the predicted increasing of the runoff in Malka and Baksan rivers, which are primarily fed by meltwater from glaciers and snow on Elbrus and other high-mountain zones, is expected to be continued until the end of the century. But this increase may be caused only by a growth of a part of the snowmelt feeding due to greater winter precipitation. The model estimates confirm the present-day observed trends within the intra-annual runoff distribution, demonstrating the earlier start of the spring flood, a decrease in summer runoff volumes and then its increase in the autumn months. The results of the research may be used for more efficient management of water resources in the North Caucasus in the future, including electricity generation and water supply.

Full Text

Restricted Access

About the authors

E. D. Kornilova

Lomonosov Moscow State University; Water Problems Institute of the Russian Academy of Sciences

Author for correspondence.
Email: ekaterina.kornilova.hydro@gmail.com
Russian Federation, Moscow; Moscow

I. N. Krylenko

Lomonosov Moscow State University; Water Problems Institute of the Russian Academy of Sciences

Email: ekaterina.kornilova.hydro@gmail.com
Russian Federation, Moscow; Moscow

E. P. Rets

Water Problems Institute of the Russian Academy of Sciences

Email: ekaterina.kornilova.hydro@gmail.com
Russian Federation, Moscow

Yu. G. Motovilov

Water Problems Institute of the Russian Academy of Sciences

Email: ekaterina.kornilova.hydro@gmail.com
Russian Federation, Moscow

I. A. Korneva

Institute of Geography of the Russian Academy of Sciences; Institute of Natural and Technical Systems

Email: ekaterina.kornilova.hydro@gmail.com
Russian Federation, Moscow; Sevastopol

T. N. Postnikova

Water Problems Institute of the Russian Academy of Sciences

Email: ekaterina.kornilova.hydro@gmail.com
Russian Federation, Moscow

O. O. Rybak

Water Problems Institute of the Russian Academy of Sciences; Institute of Natural and Technical Systems

Email: ekaterina.kornilova.hydro@gmail.com
Russian Federation, Moscow; Sevastopol

References

  1. Borsch S. V., Simonov Y. A., Khristoforov A. V. Prognozirovanie stoka rek Rossii. Streamflow forecasting in Russia. Moscow: Hydrometcenter of Russia, 2023: 200 p. [In Russian]
  2. Korneva I. A., Pybak O. O., Rybak E. A. Climate projections for Central Caucasus (CORDEX experiment results). Sistemy kontrolya okruzhayushchej sredy. Monitoring systems of environment. 2020, 4: 5–12. [In Russian]
  3. Korneva I. A., Pybak O. O. Correction of the model climatic data for simualtion of the Central Caucasus mountain glaciers. Sistemy kontrolya okruzhayushchej sredy. Monitoring systems of environment. 2024, 1 [In Russian] (в печати)
  4. Korovin V. I., Galkin G. A. Genetic structure of floods and flash-floods in the Western North Caucasus during 275 years. Izvestija Akademii Nauk of SSSR. Proceedings of the USSR Academy of Sciences. 1979, 3: 90–94. [In Russian]
  5. Motovilov Yu. G., Gelfan A. N. Modeli formirovaniya stoka v zadachax gidrologii rechnyx bassejnov. Models of runoff formation in problems of river basin hydrology. Moscow: Russian Academy of Sciences, 2018: 300 p. [In Russian]. https://doi.org/ 10.31857/S9785907036222000001
  6. Nosenko G. A., Khromova T. E., Rototaeva O. V., Shakhgedanova M. V. Glacier reaction to temperature and precipitation change in Central Caucasus, 2001–2010. Led i Sneg. Ice and Snow. 2013, 53 (1): 26–33. [In Russian]. https://doi.org/ 10.15356/2076-6734-2013-1-26-33
  7. Adler C., Huggel C., Orlove B., Nolin A. Climate change in the mountain cryosphere: impacts and responses. Regional Environmental Change. 2019, 19: 1225–1228. https://doi.org/ 10.1007/s10113-019-01507-6
  8. Bliss A., Hock R., Radić V. Global response of glacier runoff to twenty‐first century climate change. Journ. of Geophysical Research: Earth Surface. 2014, 119 (4): 717–730. https://doi.org/ 10.1002/2013JF002931
  9. Duethmann D., Bolch T., Farinotti D., Kriegel D., Vorogushyn S., Merz B., Pieczonka T., Jiang T., Su B., Güntner A. Attribution of streamflow trends in snow and glacier melt‐dominated catchments of the Tarim River, Central Asia. Water Resources Research. 2015, 51 (6): 4727–4750. https://doi.org/ 10.1002/2014WR016716
  10. Gelfan A., Semenov V.A., Gusev E., Motovilov Y., Nasonova O., Krylenko I., Kovalev E. Large-basin hydrological response to climate model outputs: uncertainty caused by internal atmospheric variability. Hydrology and Earth System Sciences. 2015, 19 (6): 2737–2754. https://doi.org/ 10.5194/hess-19-2737-2015
  11. Hagg W., Shahgedanova M., Mayer C., Lambrecht A., Popovnin V. A sensitivity study for water availability in the Northern Caucasus based on climate projections. Global and Planetary Change. 2010, 73 (3–4):161–171. https://doi.org/ 10.1016/j.gloplacha.2010.05.005.
  12. Hamed K. H., Rao A. R. A modified Mann-Kendall trend test for autocorrelated data. Journ. of hydrology. 1998, 204 (1–4): 182–196. https://doi.org/ 10.1016/S0022-1694(97)00125-X
  13. Huss M., Fischer M. Sensitivity of very small glaciers in the Swiss Alps to future climate change. Frontiers in Earth Science. 2016, 4: 34. https://doi.org/ 10.3389/feart.2016.00034
  14. Jones J. A. Hydrologic responses to climate change: considering geographic context and alternative hypotheses. Hydrological Processes. 2011, 25 (12): 1996–2000. https://doi.org/ 10.1002/hyp.8004
  15. Kraainjenbrink P. D. A., Bierkens M. F. P., Lutz A. F., Immerzeel W. W. Impact of a global temperature rise of 1.5 degrees Celsius on Asia’s glaciers. Nature. 2017, 549: 257–260. https://doi.org/ 10.1038/nature23878
  16. Kutuzov S., Lavrentiev I., Smirnov A., Nosenko G., Petrakov D. Volume changes of Elbrus glaciers from 1997 to 2017. Frontiers in Earth Science. 2019, 7: 153. https://doi.org/ 10.3389/feart.2019.00153
  17. Lüthi S., Ban N., Kotlarski S., Steger C.R., Jonas T., Schär C. Projections of alpine snow-cover in a high-resolution climate simulation. Atmosphere. 2019, 10 (8): 463. https://doi.org/ 10.3390/atmos10080463
  18. Marty C., Schlögl S., Bavay M., Lehning M. How much can we save? Impact of different emission scenarios on future snow cover in the Alps. The Cryosphere. 2017, 11 (1): 517–529. https://doi.org/ 10.5194/tc-11-517-2017
  19. Milner A. M., Khamis K., Battin T. J., Brittain J. E., Barrand N. E., Füreder L., Cauvy-Fraunié S., Gíslason G. M., Jacobsen D., Hannah D. M., Hodson A. J., Hood E., Lencioni V., Ólafsson J. S., Robinson C. T., Tranter M., Brown L. E. Glacier shrinkage driving global changes in downstream systems. Proceedings of the National Academy of Sciences. 2017, 114 (37): P. 9770–9778. https://doi.org/ 10.1073/pnas.1619807114
  20. Motovilov Yu., Gottschalk L., Engeland K., Belokurov A. ECOMAG – regional model of hydrological cycle. Application to the NOPEX region. Department of Geophysics, University of Oslo, 1999: 88.
  21. Omani N., Srinivasan R., Karthikeyan R., Smith P. Hydrological modeling of highly glacierized basins (Andes, Alps, and Central Asia). Water. 2017, 9 (2): 111. https://doi.org/ 10.3390/w9020111
  22. Pellicciotti F., Bauder A., Parola M. Effect of glaciers on streamflow trends in the Swiss Alps. Water Resources Research. 2010, 46 (10): 1–16. https://doi.org/ 10.1029/2009WR009039
  23. Postnikova T., Rybak O., Gubanov A., Zekollari H., Huss M., Shahgedanova M. Debris cover effect on the evolution of Northern Caucasus glaciers in the 21st century. Frontiers in Earth Science. 2023, 11 (1): 1–22. https://doi.org/ 10.3389/feart.2023.1256696
  24. Rafiq M., Mishra A. Investigating changes in Himalayan glacier in warming environment: a case study of Kolahoi glacier. Environmental Earth Sciences. 2016, 75: 1–9. https://doi.org/ 10.1007/s12665-016-6282-1
  25. Rahman K., Maringanti C., Beniston M., Widmer F., Abbaspour K., Lehmann A. Streamflow modeling in a highly managed mountainous glacier watershed using SWAT: the Upper Rhone River watershed case in Switzerland. Water resources management. 2013, 27 (2): 323–339. https://doi.org/ 10.1007/s11269-012-0188-9
  26. Rets E. P., Durmanov I. N., Kireeva M. B. Peak runoff in the north Caucasus: Recent trends in magnitude, variation and timing. Water Resources. 2019, 46 (1): 56–66. https://doi.org/ 10.1134/S0097807819070157.
  27. Rets E. P., Durmanov I. N., Kireeva M. B., Smirnov A. M., Popovnin V. V. Past ‘peak water’ in the North Caucasus: Deglaciation drives a reduction in glacial runoff impacting summer river runoff and peak discharges. Climatic Change. 2020, 163 (4): 2135–2151. https://doi.org/ 10.1007/s10584-020-02931-y
  28. Rets E., Kireeva M. Hazardous hydrological processes in mountainous areas under the impact of recent climate change: case study of Terek River basin. IAHS Publ. 2010, 340: 126–134.
  29. RGI 6.0 Consortium, 2017. Randolph Glacier Inventory – A Dataset of Global Glacier Outlines, Version 6.0. Boulder, Colorado USA. NSIDC: National Snow and Ice Data Center. Retrieved from: https://nsidc.org/data/nsidc-0770/versions/6 (Last access: 26 February 2023). https://doi.org/ 10.5067/f6jmovy5navz
  30. Santer B. D., Wigley T. M. L., Boyle J. S., Gaffen D. J., Hnilo J. J., Nychka D., Parker D. E., Taylor K. E. Statistical significance of trends and trend differences. Journ. of Geophys. Research. 2000, 105 (6): 7337–7356. https://doi.org/ 10.1029/1999JD901105
  31. Shahgedanova M., Hagg W., Zacios M., Popovnin V. An Assessment of the recent past and future climate change, glacier retreat, and runoff in the caucasus region using dynamical and statistical downscaling and HBV-ETH hydrological model. Regional Aspects of Climate-Terrestrial-Hydrologic Interactions in Non-boreal Eastern Europe. 2009: 63–72. https://doi.org/ 10.1007/978-90-481-2283-7_8
  32. Singh V., Jain S. K., Shukla S. K. Glacier change and glacier runoff variation in the Himalayan Baspa River basin. Journ. of Hydrology. 2021, 593: 125918 https://doi.org/ 10.1016/j.jhydrol.2020.125918
  33. Tashilova A., Ashabokov B., Kesheva L., Teunova N. Analysis of climate change in the Caucasus region: End of the 20th – Beginning of the 21st Century. Climate. 2019, 7 (11). https://doi.org/ 10.3390/cli7010011
  34. Tielidze L. G., Wheate R. D. The Greater Caucasus Glacier Inventory (Russia, Georgia and Azerbaijan). The Cryosphere. 2018, 12 (1): 81–94. https://doi.org/ 10.5194/tc-12-81-2018
  35. Tielidze L. G., Jomelli V., Nosenko G. A. Analysis of Regional Changes in Geodetic Mass Balance for All Caucasus Glaciers over the Past Two Decades. Atmosphere. 2022, 13 (2): 256. https://doi.org/ 10.3390/atmos13020256
  36. Toropov P. A., Aleshina M. A., Grachev A. M. Large‐scale climatic factors driving glacier recession in the Greater Caucasus, 20th – 21st century. International Journ. of Climatology. 2019, 39 (12): 4703–4720. https://doi.org/ 10.1002/joc.6101
  37. Vacco D. A., Alley R. B., Pollard D. Glacier advance and stagnation caused by rock avalanches. Earth Planet. Sc. Lett. 2010, 294: 123–130. https://doi.org/ 10.1016/j.epsl.2010.03.019
  38. Verhaegen Y., Huybrechts P., Rybak O. and Popovnin V. Modelling the evolution of Djankuat Glacier, North Caucasus, from 1752 until 2100 CE. The Cryosphere. 2020, 14 (11): 4039–4061. https://doi.org/ 10.5194/tc-14-4039-2020
  39. Zekollari H., Huss M., Farinotti D. Modelling the future evolution of glaciers in the European Alps under the EURO-CORDEX RCM ensemble. The Cryosphere. 2019, 13 (4): 1125–1146. https://doi.org/ 10.1029/2019gl085578

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. The Terek River basin to the Mozdok outlet: 1 — hydrological gauges; 2 — hydrological gauges and meteorological stations; 3 — meteorological stations; 4 — mountain peaks; 5 — state border of the Russian Federation; 6 — glaciers (RGI 6.0)

Download (41KB)
3. Fig. 2. Trends in changes in average annual temperature (а) and annual precipitation (б) according to actual data from meteorological stations (1977—2014), average annual (в) and maximum (г) annual discharges according to actual data from hydrological gauges in the Terek River basin (1977—2018)

Download (70KB)
4. Fig. 3. The scheme of assimilation of data from climatic and glaciological modeling by the ECOMAG model

Download (91KB)
5. Fig. 4. Predicted changes in the average annual air temperature (а), annual precipitation (б) and glaciation area (в) for river basins to various outlets in the Terek River basin for two (RCP2.6 and RCP8.5)

Download (47KB)
6. Fig. 5. Predicted anomalies of average monthly air temperatures (а), precipitation (б) and snowmelt (в) in the Terek River basin for two different scenarios (RCP2.6 and RCP8.5) within the studied catchment area

Download (53KB)
7. Fig. 6. Anomalies of the average monthly discharges relative to the base historical period (а: 1 — Baksan–Tyrnyauz; 2 — Baksan–Zayukovo; 3 — Chegem–Nizhny Chegem; 4 — Malka–Kamennomostskoye; 5 — Terek–Kotlyarevskaya), transformation of the intra–annual flow distribution and its anomalies in the Baksan River – Tyrnyauz (б) and the Chegem River – Nizhny Chegem (в) in scenarios RCP2.6 and RCP8.5

Download (96KB)

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».