Meteorological regime of the Elbrus high-mountain zone during the accumulation period

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Unique automated meteorological observations were carried out on the southern slope of Elbrus, near Pastukhov Rocks, at 4700 m a.s.l., during the 2021–2022 accumulation season. Data were obtained on air temperature, humidity, wind speed and direction, snowdrift and radiation fluxes with a temporal resolution of 1 minute or less. Analysis of the data series showed that the representative winter air temperature at this altitude on the southern slope of Elbrus is –10 °С, and the minimum is –36.4 °С; the partial pressure of water vapor does not exceed 3.5 hPa. At the same time, the average daily maximum of wind speed amounted 13.1 m s–1 with the absolute maximum of 54.1 m/s. Snowstorms with a snow transport intensity of more 0.1 kg/m2s–1 are quite common phenomenon in winter, while the maximum average value of the transport reaches 0.87 kg/m2s–1. An empirical relationship was established between the average hourly wind speed and the maximum gust speed for the same period, and it was shown that for these conditions the wind gust exceeds the average hourly wind speed by 1.8 times, while the representative value of the standard deviation of wind speed is 5.8 m s–1. This information may be useful not only for the glaciologic problems and modeling, but also for construction and engineering surveys, which are relevant in view of the present-day active development of the mountain ski infrastructure on the southern macro-slope of the Elbrus. In addition, the obtained series of instrumental observations were used to assess the quality of reanalysis data for high mountain regions taking as an example the ERA5. The ERA5 reanalysis was demonstrated to reproduce rather successfully the air temperature, wind speed and humidity in high mountain conditions, but extreme values for all these parameters are underestimated. Thus, the minimum temperature in winter turned out to be overestimated by 2 °C, and the maximum was underestimated by 4 °C, while the wind speed, according to the ERA5 reanalysis, never exceeded 40 m/s during the above observation period. It is also shown that the FlowCapt4 acoustic blizzard gauge (driftometer) can be used to estimate average wind speeds since it is less sensitive to severe high-altitude conditions compared to acoustic and cup anemometers.

Full Text

Restricted Access

About the authors

E. D. Drozdov

Institute of Geography RAS; Lomonosov Moscow State University

Author for correspondence.
Email: drozdov.jeka@yandex.ru
Russian Federation, Moscow; Moscow

P. A. Toropov

Institute of Geography RAS; Lomonosov Moscow State University

Email: drozdov.jeka@yandex.ru
Russian Federation, Moscow; Moscow

V. K. Avilov

Institute of Problems of Ecology and Evolution A. N. Severtsov RAS

Email: drozdov.jeka@yandex.ru
Russian Federation, Moscow

A. Yu. Artamonov

Institute of Atmospheric Physics A. M. Obukhov RAS

Email: drozdov.jeka@yandex.ru
Russian Federation, Moscow

A. A. Polyukhov

Lomonosov Moscow State University; Hydrometcenter of Russia

Email: drozdov.jeka@yandex.ru
Russian Federation, Moscow; Moscow

I. V. Zheleznova

Lomonosov Moscow State University

Email: drozdov.jeka@yandex.ru
Russian Federation, Moscow

Yu. I. Yarinich

Lomonosov Moscow State University; Institute of Atmospheric Physics A. M. Obukhov RAS

Email: drozdov.jeka@yandex.ru
Russian Federation, Moscow; Moscow

References

  1. Baranov S., Pokrovskaya T. Study of the meteorological group ECSE1935 y. Trudy El’brusskoj ekspedicii 1934 i 1935 gg. Proc. of the Elbrus Expedition of 1934 and 1935. Moscow, Leningrad: Publishing House of the USSR Academy of Sciences, 1936: 199–209 [In Russian].
  2. Voloshina A. P. Radiation conditions during the ablation period. Oledenenie Elbrusa. Elbrus Glaciation. Moscow: MSU Publishing House, 1968: 158–168 [In Russian].
  3. Voloshina A. P. Meteorology of mountain glaciers. Materialy Glyaciologichkih Issledovanij. Data of Glaciological Studies. 2001, 92: 3–148 [In Russian].
  4. Gandin L. S., Kagan R. L. Statisticheskie metody interpretatsii meteorologicheskich dannyh. Statistical methods for interpreting meteorological data. Leningrad: Hydrometeoizdat, 1976: 360 p. [In Russian].
  5. Drozdov E. D., Turkov D. V., Toropov P. A., Artamonov A. Yu. Thermal regime of snow cover in winter in the high-mountainous part of Elbrus according to observational data and modeling results. Led i Sneg. Ice and Snow. 2023, 2 (63): 225–242. https://doi.org/10.31857/S2076673423020059 [In Russian].
  6. Zverev A. S. Sinopticheskaya meteorologiya. Synoptic meteorology. Leningrad: Hydrometeoizdat, 1977: 711 p. [In Russian].
  7. Russia Glacier Inventory. Retrieved from: https://www.glacrus.ru (Last access: 15 July 2023) [In Russian].
  8. Kuksova N. E., Toropov P. A., Oleinikov A. D. Meteorological conditions of extreme avalanche formation in the Caucasus Mountains (according to observations and reanalysis). Led i Sneg. Ice and Snow. 2021, 3 (61): 377–390. https://doi.org/10.31857/S2076673421030095 [In Russian].
  9. Lavrentiev I. I., Petrakov D. A., Kutuzov S. S., Kovalenko N. V., Smirnov A. M. Assessment of glacier lakes development potential in the Central Caucasus. Led i Sneg. Ice and Snow. 2020, 3 (60): 343–360. https://doi.org/10.31857/S2076673420030044 [In Russian].
  10. Ledniki i klimat Elbrusa. Glaciers and climate of Elbrus. Мoscow, Saint Petersburg: Nestor-Istoria, 2020: 372 p. [In Russian].
  11. Monin A. S., Obukhov A. M. Basic principles of turbulent mixing in the surface layer of the atmosphere. Trudy GEOFIAN. Proc. of GEOPHYAS. 1954, 24 (151): 163–187. [In Russian].
  12. Oleinikov A. D., Volodicheva N. A. Recent trends of snow avalanche regime in the Central Caucasus (Elbrus region as an example). Led i Sneg. Ice and Snow. 2019, 2 (59): 191–200. https://doi.org/10.15356/2076-6734-2019-2-400 [In Russian].
  13. Rototaeva O. V., Nosenko G. A., Kerimov A. M., Kutuzov S. S., Lavrentiev I. I., Nikitin S. A., Kerimov A. A., Tarasova L. N. Changes of the mass balance of the Garabashy Glacier, Mount Elbrus, at the turn of 20th and 21st centuries. Led i Sneg. Ice and Snow. 2019, 1 (59): 5–22. https://doi.org/10.15356/2076-6734-2019-1-5-22 [In Russian].
  14. Toropov P. A., Michalenko V. N., Kutuzov S. S., Morozova P. A., Shestakova A. A. Temperature and radiation regime of glaciers on the slopes of Elbrus during the ablation period over the past 65 years. Led i Sneg. Ice and Snow. 2016, 1 (56): 5–19. https://doi.org/10.15356/2076-6734-2016-1-5-19 [In Russian].
  15. Amory C. Drifting-snow statistics from multiple-year autonomous measurements in Adélie Land, East Antarctica. The Cryosphere. 2020, 14: 1713–1725. https://doi.org/10.5194/tc-14-1713-2020
  16. Barry R. G. Mountain weather and climate. London: Cambridge University Press, 2008: 505 p.
  17. Born K., Ludwig P., Pinto J. G. Wind gust estimation for Mid-European winter storms: towards a probabilistic view. Tellus A: Dynamic Meteorology and Oceanography. 2012, 64: 17471. https://doi.org/10.3402/tellusa.v64i0.17471
  18. Chritin V., Bolognesi R., Gubler H. Flow Capt: a new acoustic sensor to measure snowdrift and wind velocity for avalanche forecasting. Cold Regions Science and Technology. 1999, 30: 125–133.
  19. Drozdov E., Toropov P., Androsova A., Gibadullin R., Gvozdeva A., Leusenko L., Melik-Bagdasarova A., Polyukhov A., Yarinich Y. The structure of blizzard transport and heat costs of sublimation of ice crystals in blizzards on the surface of the Elbrus Mountain glacier Environ. Sci. Proc. 2022, 4. https://doi.org/10.3390/ecas2022-12877
  20. Essery R., Kim H., Wang L., Bartlett P., Boone A., Brutel-Vuilmet C., Burke E., Cuntz M., Decharme B., Dutra E., Fang X., Gusev Y., Hagemann S., Haverd V., Kontu A., Krinner G., Lafaysse M., Lejeune Y., Marke T., Marks D., Marty C., Menard C. B., Nasonova O., Nitta T., Pomeroy J., Schädler G., Semenov V., Smirnova T., Swenson S., Turkov D., Wever N., Yuan H. Snow cover duration trends observed at sites and predicted by multiple models. The Cryosphere. 2020, 14: 4687–4698. https://doi.org/10.5194/tc-14-4687-2020
  21. Hardy D. R., Vuille M., Bradley R. S. Variability of snow accumulation and isotopic composition on Nevado Sajama, Bolivia. Journ. of Geophys. Research. 2003, 108: 1–10. https://doi.org/10.1029/2003JD003623
  22. Hersbach H., Bel B., Berrisford P. ERA5 hourly data on pressure levels from 1940 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). 2023. https://doi.org/10.24381/cds.bd0915c6
  23. Huss M., Hock R. Global-scale hydrological response to future glacier mass loss. Nat. Clim. Chang. 2018, 8 (2): 135–140. https://doi.org/10.1038/s41558-017-0049-x
  24. High Mountain Areas in IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (The Intergovernmental Panel on Climate Change (IPCC), 2019). Lead authors R. Hock, G. Rasul, S. Kutuzov et al. 2019.
  25. Jaedicke C. Acoustic snowdrift measurements: Experiences from the Flow Capt instrument. Cold Reg. Sci. Technol. 2001, 32: 71–81. https://doi.org/10.1016/S0165-232X(01)00017-9
  26. Lehning M., Naaim F., Naaim M. Snow drift: acoustic sensors for avalanche warning and research. Natural Hazards and Earth System Sciences. 2002, 2 (3/4): 121–128.
  27. Marzeion B., Jarosch A. H., Gregory J. M. Feedbacks and mechanisms affecting the global sensitivity of glaciers to climate change. The Cryosphere. 2014, 8: 59–71.
  28. Mölg T., Cullen N. J., Hardy D. R., Kaser J., Klok L. Mass balance of a slope glacier on Kilimanjaro and its sensitivity to climate. Intern. Journ. of Climatology. 2008, 28: 881–892. https://doi.org/10.1002/joc.1589
  29. Rets E. P., Popovnin V. V., Toropov P. A., Smirnov A. M., Tokarev I. V., Chizhova Ju.N., Budantseva N. A., Vasil’chuk Yu.K., Kireeva M. B., Ekaykin A. A., Veres A. N., Aleynikov A. A., Frolova N. L., Tsyplenkov A. S., Poliukhov A. A., Chalov S. R., Aleshina M.A, Kornilova E. D. Djankuat glacier station in the North Caucasus, Russia: a database of glaciological, hydrological, and meteorological observations and stable isotope sampling results during 2007–2017. Earth Syst. Sci. Data. 2019, 11: 1463–1481. https://doi.org/10.5194/essd-11-1463-2019
  30. Rets E. P., Durmanov I. N., Kireeva M. B., Smirnov A. M., Popovnin V. V. Past “peak water” in The North Сaucasus: deglaciation drives a reduction in glacial runoff impacting summer river runoff and peak discharges. Climatic Change. 2020, 163: 2135–2151. https://link.springer.com/article/10.1007/s10584-020-02931
  31. Shea J. M., Wagnon P., Immerzeel W. W., Biron R., Brun F., Pellicciotti F. A comparative high-altitude meteorological analysis from three catchments in the Nepalese Himalaya. Inter. Journ. of water resources development. 2015, 31: 174–200. https://doi.org/10.1080/07900627.2015.1020417
  32. Tielidze L. G., Wheate R. D. The Greater Caucasus glacier inventory. The Cryosphere. 2018, 12. 81–94.
  33. Toropov P. A., Aleshina M. A., Grachev A. M. Large-scale climatic factors driving glacier recession in the Greater Caucasus, 20th — 21st century. International Journ. of Climatology. 2019, 39: 4703–4720.
  34. Trouvilliez A., Naaim-Bouvet F., Bellot H., Genthon C., Gallée H. Evaluation of the FlowCapt Acoustic Sensor for the Aeolian Transport of Snow. Journ. Atmos. Ocean. Technol. 2015, 32: 1630–164. https://doi.org/10.1175/JTECH-D-14-00104.1
  35. Wendler G. Blowing snow in eastern Antarctica. Antarctic Journ. of the U. S. Review. 1987: 264–265.
  36. WGMS (2021): Global Glacier Change Bulletin No. 4 (2018–2019). Zürich, Switzerland: ISC(WDS)/IUGG(IACS)/UNEP/UNESCO/WMO, World Glacier Monitoring Service, 2021: 278 p.
  37. Zhang W., He J., Chen A., Wu X., Shen Y. Observations of Drifting Snow Using FlowCapt Sensors in the Southern Altai Mountains, Central Asia. Water. 2022, 14: 845. https://doi.org/10.3390/w14060845

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Research area (Elbrus Mountain) (а) with the position in the Caucasus (б) and the measuring complex in the accumulation zone of the Garabashi Glacier (Pastukhov rocks) in 2021–2022 (в): 1 — the Gill sonic anemometer; 2 — “lightning protection brushes”; 3 — Rotronic thermohygrometer;4 — HukseFlux net radiometer; 5 — box with Campbell logger and mobile data transmission device; 6 — ISAW FlowCapt4 acoustic driftometer. The punsons show: “AWS Pastukhov Rocks” — a measuring site (height 4720 m a.s.l.) and the Western peak of Elbrus (5642 m a.s.l.).

Download (756KB)
3. Fig. 2. Observation data series for the period from 09/01/2021 to 06/01/2022 from the AWS at Pastukhov Rocks (а): 1 — air temperature at 2 m; 2 — total short-wave radiation flux density; 3 — reflected short-wave radiation flux density; 4 — upward long-wave radiation flux density; 5 — downward long-wave radiation flux density; 6 — radiation balance; 7 — partial pressure of water vapor; 8 — wind speed at 2 m; 9 — snowdrift transfer intensity at 1 m; distribution functions for radiation balance (б), air temperature at 2m (в), partial pressure of water vapor (г), average wind speed (д), daily wind speed maximum (е), snowdrift transfer intensity (ж). Arrows and captions show extreme and distribution mode values.

Download (833KB)
4. Fig. 3. Spectral density functions for data series of temperature (а), relative humidity (б) and wind speed (в) according to the Pastukhov Rocks AWS measurements with a discreteness of 1 minute from 09/01/2021 to 06/01/2022. The shaded areas and labels show different scale variability.

Download (267KB)
5. Fig. 4. Scatter diagram for 30-minute average wind speed values according to measurements using the ISAW FC4 acoustic driftometer and Gill WindMaster acoustic anemometer from 09/01/2021 to 09/23/2021 (а) and scatter diagram for 1-hour average wind speed values according to measurements using ISAW FC4 acoustic driftometer and ERA5 reanalysis data at the 550 hPa pressure level from 09/01/2021 to 06/01/2022 (б).

Download (427KB)
6. Fig. 5. Partial pressure of water vapor for the entire observation period (а): 1 — according to direct observations from the Pastukhov Rocks AWS; 2 — according to ERA5 reanalysis data at the 550 hPa pressure level. Scatter diagram for 1-hour average air temperature according to measurements from the Pastukhov Rocks AWS and ERA5 reanalysis data at the 550 hPa level for the entire observation period (б).

Download (364KB)

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».