Refined simple model of stable water isotopic content in central Antarctic precipitation including Oxygen 17 fractionation

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Modeling the isotopic composition of atmospheric precipitation is an important tool for climatic, paleoclimatic and hydrological studies. This paper presents an improved simple model of the isotopic composition of precipitation in Central Antarctica. It differs from the previous version published by Salamatin et al. (2004) by 1) the included geochemical cycle of oxygen 17 and 2) the possibility of solving the inverse problem (i.e., finding the trajectory parameters that could form the isotopic composition of the precipitation observed at the end of the trajectory). The paper examines in detail the main tuning parameters of the model, among which the most important are the temperature and humidity in the moisture source, the “circulation parameter”, which takes into account the advection of vapor into the moisture source, the condensation temperature and the degree of air supersaturation with moisture in ice clouds. Based on the analysis of data on the isotopic composition (including “excess of oxygen 17”, 17O-xs) of water vapor in the surface layer of the atmosphere over the ocean and surface snow sampled along meridional profiles in East Antarctica, the optimal tuning of the model for calculating the isotopic composition of atmospheric precipitation at the Antarctic Vostok station was performed. In particular, it is shown that the temperature and humidity of the air in the moisture source are +17.4°C and 72%, respectively, and the condensation temperature is –41.3°C. The possibilities of using the model to analyze the isotopic composition of liquid precipitation falling on other continents are discussed. The final part of the paper discusses the limitations of the model. In particular, it is noted that the model does not take into account such processes as the evaporation of precipitation when it falls in arid conditions, mixing of trajectories, the influence of local sources of moisture, as well as the features of isotope fractionation during the evaporation of moisture from the continents.

Full Text

Restricted Access

About the authors

A. A. Ekaykin

Arctic and Antarctic Research Institute

Author for correspondence.
Email: ekaykin@aari.ru
Russian Federation, Saint Petersburg

References

  1. Veres A. N., Ekaykin A. A., Vladimirova D. O., Kozachek A. V., Lipenkov V. Ya., Skakun A. A. Climatic variability in the era of MIS-11 (370–440 ka BP) according to isotope composition (D, 18O, 17O) of ice from the Vostok station cores. Led i Sneg. Ice and Snow. 2018, 58 (2): 149–158. https://doi.org/10.15356/2076-6734-2018-2-149-158 [In Russian].
  2. Ekaykin A. A. Stable water isotopes in Glaciology and Paleogeography. Methodological textbook. Saint Petersburg: AARI. 2016: 68 p. [In Russian].
  3. Papina T. S., Malygina N. S., Eirikh A. N., Galanin A. A., Zheleznyak M. N. Isotopic composition and sources of atmospheric precipitation in central Yakutia. Kriosfera Zemli. Earth’s Cryosphere. 2017, XXI (2): 60–69. https://doi.org/10.21782/KZ1560-7496-2017-2(60-69) [In Russian].
  4. Aron P. G., Levin N. E., Beverly E. J., Huth T. E., Passey B. H., Pelletier E. M., Poulsen C. J., Winkelstern I. Z., Yarian D. A. Triple oxygen isotopes in the water cycle. Chemical Geology. 2021, 565 (120026): 1–23. https://doi.org/10.1016/j.chemgeo.2020.120026
  5. Barkan E., Luz B. High precision measurements of 17O/16O and 18O/16O ratios in H2O. Rapid Commun. Mass Spectrom. 2005, 19 (24): 3737–3742.
  6. Barkan E., Luz B. Diffusivity fractionations of H216O/H217O and H216O/H218O in air and their implications for isotope hydrology. Rapid Commun. Mass Spectrom. 2007, 21 (18): 2999–3005.
  7. Cappa C. D., Hendricks M. B., DePaolo D., Cohen R. C. Isotopic fractionation of water during evaporation. Journ. of Geophys. Research. 2003, 108 (D16, ACL 13).
  8. Ciais. P., Jouzel J. Deuterium and oxygen 18 in precipitation: Isotopic model, including mixed cloud processes // Journ. of Geophys. Research. 1994, 99 (D8): 16793–16803.
  9. Craig H., Gordon L. I. Deuterium and oxygen-18 variations in the ocean and the marine atmosphere. Stable isotopes in oceanographic studies and paleotemperatures, Pisa, Consiglio Nazionale della Ricerche, Laboratorio di Geologia Nucleare, 1965: 9–130.
  10. Dansgaard W. Stable isotopes in precipitation. Tellus. 1964, 16: 436–468.
  11. Davidge L., Steig E. J., Schauer A. J. Improving continuous-flow analysis of triple oxygen isotopes in ice cores: insights from replicate measurements. Atmos. Meas. Tech. 2022, 15: 7337–7351. https://doi.org/10.5194/amt-15-7337-2022
  12. Ekaykin A. A. Meteorological regime of central Antarctica and its role in the formation of isotope composition of snow thickness. Universite Joseph Fourier, Grenoble. 2003: 136 p.
  13. Ellehoj M. D., Steen-Larsen H.C., Johnsen S. J., Madsen M. B. Ice-vapor equilibrium fractionation factor of hydrogen and oxygen isotopes: Experimental investigations and implications for stable water isotope studies. Rapid Commun. Mass Spectrom. 2013, 27 (19): 2149–2158. https://doi.org/10.1002/rcm.6668
  14. Goursaud S., Masson- Delmotte V., Favier V., Orsi A., Werner M. Water stable isotope spatio-temporal variability in Antarctica in 1960–2013: observations and simulations from the ECHAM5-wiso atmospheric general circulation model. Clim. Past. 2018, 14: 923–946. https://doi.org/10.5194/cp-14-923-2018
  15. Jouzel J., Merlivat L. Deuterium and oxygen 18 in precipitation: modeling of the isotopic effects during snow formation. Journ. of Geophys. Research. 1984, 89 (D7): 11749–11757.
  16. Jouzel J., Merlivat L., Lorius C. Deuterium excess in an East Antarctic ice core suggests higher relative humidity at the oceanic surface during the last glacial maximum. Nature. 1982, 299 (5885): 688–591.
  17. Jouzel J., Vaikmae R., Petit J. R., Martin M., Duclos Y., Stievenard M., Lorius C., Toots M., Melieres M. A., Burckle L. H., Barkov N. I., Kotlyakov V. M. The two-step shape and timing of the last deglaciation in Antarctica. Climate Dynamics. 1995, 11: 151–161.
  18. Landais A., Casado M., Fourré E. Antarctic climate records through water isotopes. Earth Systems and Environmental Sciences, Elsevier. 2023.
  19. Leroy-Dos Santos C., Fourré E., Agosta C., Casado M., Cauquoin A., Werner M., Minster B., Prié F., Jossoud O., Petit L., Landais A. From atmospheric water isotopes measurement to firn core interpretation in Adelie Land: A case study for isotope-enabled atmospheric models in Antarctica. EGUsphere. 2023: 1–20. https://doi.org/10.5194/egusphere-2023-447, in press.
  20. Lorius C., Merlivat L. Distribution of mean surface stable isotope values in East Antarctica: observed changes with depth in the coastal area. IAHS publications. 1977, 118: 127–137.
  21. Markle B. R., Steig E. J. Improving temperature reconstructions from ice-core water-isotope records. Climate Past. 2022, 18: 1321–1368. https://doi.org/10.5194/cp-18-1321-2022
  22. Masson-Delmotte V., Hou S., Ekaykin A. A., Jouzel J., Aristarain A., Bernardo R. T., Bromwich D., Cattani O., Delmotte M., Falourd S., Frezzotti M., Gallee H., Genoni L., Isaksson E., Landais A., Helsen M., Hoffmann G., Lopez J., Morgan V., Motoyama H., Noone D., Oerter H., Petit J. R., Royer A., Uemura R., Schmidt G. A., Schlosser E., Simoes J. C., Steig E., Stenni B., Stievenard M., van den Broeke M., van de Wal R., van den Berg W. J., Vimeux F., White J. W. C. A review of Antarctic surface snow isotopic composition: observations, atmospheric circulation and isotopic modelling. Journ. of Climate. 2008, 21 (13): 3359–3387.
  23. Meijer H. A. J., Li W. J. The use of electrolysis for accurate 17O and 18O isotope measurements in water. Isotopes in Environmental and Health Studies. 1998, 34: 349–369. https://doi.org/10.1080/10256019808234072
  24. Merlivat L. Molecular diffusivities of H216O, HD16O and H218O in gases. Journ. Chem. Phys. 1978, 69: 2864–2871.
  25. Merlivat L., Jouzel J. Global climatic interpretation of the deuterium-oxygen 18 relationship for precipitation. Journ. of Geophys. Research. 1979, 84 (C8): 5029–5033.
  26. Merlivat L., Nief G. Fractionnement isotopique lors des changements d’etat solide-vapeur et liquide-vapeur de l’eau a des temperatures inferieures a C. Tellus. 1967, 19 (1): 122–127.
  27. Pang H., Hou S., Landais A., Masson-Delmotte V., Prie F., Steen-Larsen H.C., Risi C., Li Y., Jouzel J., Wang Y., He J., Minster B., Falourd S. Spatial distribution of 17O-excess in surface snow along a traverse from Zhongshan station to Dome A, East Antarctica. Earth and Planetary Science Letters. 2015, 414: 126–133. https://doi.org/10.1016/j.epsl.2015.01.014
  28. Pang H., Zhang P., Wu S., Jouzel J., Steen-Larsen H.C., Liu K., Zhang W., Yu J., An C., Chen D., Hou S. The Dominant Role of Brewer-Dobson Circulation on 17O-Excess Variations in Snow Pits at Dome A, Antarctica. Journ. of Geophys. Research. Atmosphere. 2022, 127 (e2022JD036559): 1–10. https://doi.org/10.1029/2022JD036559
  29. Reference Sheet for International Measurement Standards (2006). https://web.archive.org/web/20200729203147/https://nucleus.iaea.org/rpst/documents/VSMOW_SLAP.pdf
  30. Risi C., Landais A., Bony S., Jouzel J., Masson-Delmotte V., Vimeux F. Understanding the 17O excess glacial‐interglacial variations in Vostok precipitation. Journ. of Geophys. Research. 2010, 115 (D10112): 1–15. https://doi.org/10.1029/2008JD011535
  31. Salamatin A. N., Ekaykin A. A., Lipenkov V. Ya. Modelling isotopic composition in precipitation in Central Antarctica. Materialy Glyatsiologicheskih Issledovaniy. 2004, 97: 24–34.
  32. Schoenemann S. W., Steig E. J. Seasonal and spatial variations of 17Oexcess and dexcess in Antarctic precipitation: Insights from an intermediate complexity isotope model. Journ. of Geophys. Research. Atmosphere. 2016, 121 (19): 11215–11247. https://doi.org/10.1002/2016JD025117
  33. Sodemann H., Stohl A. Asymmetries in the moisture origin of Antarctic precipitation. Geophys. Research Letters. 2009, 36 (L22803): 1–5.
  34. Srivastava R., Ramesh R., Prakash S., Anilkumar N., Sudhakar M. Oxygen isotope and salinity variations in the Indian sector of the Southern Ocean. Geophys. Research Letters. 2007, 34 (L24603): 1–4.
  35. Steig E. J., Jones T. R., Schauer A. J., Kahle E. C., Morris V. A., Vaughn B. H., Davidge L., White J. W. C. Continuous-Flow Analysis of 17O, 18O, and D of H2O on an Ice Core from the South Pole. Front. Earth Science. 2021, 9 (640292): 1–14. https://doi.org/10.3389/feart.2021.640292
  36. Thurnherr I., Kozachek A. V., Graf P., Weng Y., Bolshiyanov D. Y., Landwehr S., Pfahl S., Schmale J., Sodemann H., Steen-Larsen H.C., Toffoli A., Wernli H., Aemisegger F. Meridional and vertical variations of the water vapour isotopic composition in the marine boundary layer over the Atlantic and Southern Ocean. Atmos. Chem. Phys. 2020, 20: 5811–5835. https://doi.org/10.5194/acp-20-5811-2020
  37. Uemura R., Barkan E., Abe O., Luz B. Triple isotope composition of oxygen in atmospheric water vapor. Geophys. Research Letters. 2010, 37 (L04402): 1–4. https://doi.org/10.1029/2009GL041960
  38. Uemura R., Masson-Delmotte V., Jouzel J., Landais A., Motoyama H., Stenni B. Ranges of moisture-source temperature estimated from Antarctic ice cores stable isotope records over glacial–interglacial cycles. Clim. Past. 2012, 8: 1109–1125. https://doi.org/10.5194/cp-8-1109-2012
  39. Werner M., Langebroek P. M., Carlsen T., Herold M., Lohmann G. Stable water isotopes in the ECHAM5 general circulation model: Toward high‐resolution isotope modeling on a global scale. Journ. of Geophys. Research. 2011, 116 (D15109): 1–14. https://doi.org/10.1029/2011JD015681
  40. Westbrook C. D., Illingworth A. J. Evidence that ice forms primarily in supercooled liquid clouds at temperatures > –27C. Geophys. Research Letters. 2011, 38 (L14808): 1–4. https://doi.org/10.1029/2011GL048021
  41. Winkler R., Landais A., Risi C., Baroni M., Ekaykin A. A., Jouzel J., Petit J. R., Prie F., Minster B., Falourd S. Inter-annual variation of water isotopologue at Vostok indicates a contribution from stratospheric water vapour. PNAS. 2013. https://doi.org/10.1073/pnas.1215209110
  42. Xia Z., Surma J., Winnick M. J. The response and sensitivity of deuterium and 17O excess parameters in precipitation to hydroclimate processes. Earth-Science Reviews. 2023, 242 (104432): 1–26. https://doi.org/10.1016/j.earscirev.2023.104432

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Location of scientific profiles in the Princess Elizabeth Land (East Antarctica), along which samples of isotopic composition were taken: 1 — profile Mirny-Vostok (Ekaykin, 2003); 2 — profile Progress-Vostok (this work); 3 — profile Zhongshan-Dome A (Pang et al., 2015). The cartographic basis was taken from the website of the Antarctic Digital Database project (https://www.add.scar.org/).

Download (193KB)
3. Fig. 2. Influence of conditions in the moisture source on the isotopic composition of the initial water vapor Rᵥ₀:

Download (143KB)
4. Fig. 3. Change in the isotopic composition of precipitation along the trajectory according to the model data.

Download (465KB)
5. Fig. 4. Isotopic composition of water vapor over the ocean:

Download (701KB)
6. Fig. 5. The distribution of the isotopic composition of surface snow in the area of Princess Elizabeth Land (East Antarctica) when moving from the coast to the central parts of the continent: 

Download (165KB)

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies