Thickness and Volume of Glaciers of the Mongun-taiga Massif, Altai, in 2021 Based on Ground Penetrating Radar Data and Modeling

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Received April 26, 2023; revised August 18, 2023; accepted October 2, 2023

This article presents the results of estimating the scale of the present-day glaciation of the Mongun-Taiga Mountain range (Eastern Altai) based on the decoding multi-time satellite images, GPR data and modelling using GlabTop2 and the Volume-Area Scaling (VAS) method. By 2021, 38 glaciers have been identified according to the hydrological principle and 36 ones – by the morphological principle. The total area is estimated as 17.18 ± 1.13 km2. Since 2010, area of the glaciers has decreased by 15%. The thickness of the glacial complex on the main peak of the Mongun-Taiga Mountain range was measured in the ablation season of 2021. More than 6 km of profiles were obtained by the GPR survey with accuracy of about 1%. Based on these data, the GlabTop2 model was calibrated. Then the spatial distribution of the ice thickness was obtained over the entire massif. The total volume of ice in the flat-summit glacier № 17 is estimated at 0.202 ± 0.008 km3 of ice. According to the GlabTop2 model with the morphological approach the ice volume of the whole massif was estimated at 0.733 ± 0.052 km3, and with the hydrological approach: 0.888 ± 0.061 km3. Determination of the boundaries of glaciers by the VAS method gave larger values: 0.690 ± 0.038 km3 with a morphological approach and 0.757 ± 0.036 km3 with a hydrological method. Consequently, with the same area of glaciers, volume determined by two different approaches can be rather different. This has a decisive influence on the morphological structure of ice reserves: the role of large forms of glaciation sharply prevails with the morphological approach. Most of the ice is contained in glaciers of the flat summit (27–40%). With the hydrological approach, which is used most often, the role of small forms of glaciation is overestimated. At the same time, the contribution of flat-summit glaciers is estimated at only 2%.

About the authors

S. A. Griga

Saint-Petersburg State University

Author for correspondence.
Email: semyon.griga@yandex.ru
Russia, St. Petersburg

D. A. Ganyushkin

Saint-Petersburg State University

Email: semyon.griga@yandex.ru
Russia, St. Petersburg

D. V. Bantsev

Saint-Petersburg State University

Email: semyon.griga@yandex.ru
Russia, St. Petersburg

M. R. Nikolaev

Saint-Petersburg State University

Email: semyon.griga@yandex.ru
Russia, St. Petersburg

M. P. Kashkevich

Saint-Petersburg State University

Email: semyon.griga@yandex.ru
Russia, St. Petersburg

K. A. Ibraev

Saint-Petersburg State University

Email: semyon.griga@yandex.ru
Russia, St. Petersburg

References

  1. Vinogradov O.N., Krenke A.N., Oganovsky P.N. Rukovodstvo po sostavleniyu kataloga lednikov SSSR. Guide to compiling a catalog of glaciers of the USSR. Leningrad: Hydrometeoizdat, 1966: 154 p. [In Russian].
  2. Ganyushkin D.A. Evolution of climate and glaciation of the Mongun-Taiga massif (South-Western Tuva) in the Wurm and Holocene. PhD. St. Petersburg: St. Petersburg State University, 2001: 195 p. [In Russian].
  3. Ganyushkin D.A., Konkova O.S., Chistyakov K.V., Bantsev D.V., Terekhov A.V., Kunaeva E.P., Kurochkin Yu.N., Andreeva T.A., Volkova, D.D. Shrinking of the glaciers of East Altai (Shapshal Center) after the maximum of the Little Ice Age. Led i Sneg. Ice and Snow. 2021, 61 (4): 500–520 [In Russian]. https://doi.org/10.31857/S2076673421040104
  4. Ganyushkin D.A., Konkova O.S., Chistyakov K.V., Ekaykin A.A., Volkov I.V., Bantsev D.V., Terekhov A.V. Kunaeva E.P., Kurochkin Yu.N. The state of the Shapshalsky glacierization center (Eastern Altai) in 2015. Led i Sneg. Ice and Snow. 2021, 61 (1): 38–57 [In Russian]. https://doi.org/1031857/S2076673421010070
  5. Dokukin M.D. Outstanding breakthroughs of lakes in 2012–2013 (based on remote sensing materials) Part 2. Sbornik trudov Severo-Kavkazskogo instituta po proektirovaniu vodohoziaistvennogo i meliorativnogo stroitelstva. Proc. of the North Caucasus Institute for the Design of Water Management and Reclamation Construction. 2015: 41–58 [In Russian].
  6. Dokukin M.D., Bekkiev M.Yu., Kalov R.H., Savernyuke E.A., Chernomorets S.S. Signs of preparation of catastrophic glacier descents (analysis of multi-temporal space information. Opasnie prirodnie I tehnogennie processi v gornih regionah: modeli, sistemi, tehnologii. Dangerous natural and technogenic processes in mountain regions: models, systems, technologies, 2019: 522–528 [In Russian].
  7. Dokukin M.D., Bekkiev M.Yu., Kalov R.H., Chernomorets S.S., Savernyuk E.A. Activation of landslides in the Central Caucasus and their influence on the dynamics of glaciers and mudflow processes. Led i Sneg. Ice and snow. 2020, 60 (3): 361–378 [In Russian]. https://doi.org/10.31857/S2076673420030045
  8. Yerasov N.V. Method of determining the volume of mountain glaciers. Materiali gliaciologicheskih issledovanii. Materials of glaciological research. 1968, 14: 307–308 [In Russian].
  9. Katalog lednikov SSSR. USSR Glacier Inventory. Moscow–Leningrad: Hydrometeoizdat, 1965–1982 [In Russian].
  10. Kedich A.I., Kharchenko S.V., Voices. V.N., Uspensky M.I. In Relief formation of proglacial zones: its specificity, problems and prospects of study. VIII Shchukinskie chtenia: rel’ef i prirodopolzovanie. VIII Shchukin readings: relief and nature management. 2020: 174–180 [In Russian].
  11. Kerimov M.A., Gegiev K.A., Anaev M.T., Gergokova Z.Zh. In The change of mudflow Cherek-Bezengi activity in the Vyazi river basin with intensive degradation of glaciation. Ustojchivoe razvitie gornyh territorij Kavkaza. T. 1. IIET RAN. Sustainable development of the mountainous territories of the Caucasus. V. I.: IIET RAS. 2018: 589 [In Russian].
  12. Kitov A.D., Ivanov E.N., Plyusnin V.M., Gladkov A.S., Lu-nina O.V., Serebryakov E.V., Afonkin A.M. Georadiolocation studies of the Peretolchin glacier (Southern Siberia). Geografiya i prirodnye resursy. Geography and Natural resources. 2018, 1: 158–166 [In Russian]. https://doi.org/10.21782/GIPR0206-1619-2018-1(158-166)
  13. Lavrentiev I.I., Kutuzov S.S., Petrakov D.A., Popov G.A., Popovnin V.V. Thickness, volume of ice and subglacial relief of the Dzhankuat glacier (Central Caucasus). Led i Sneg. Ice and Snow. 2014, 54 (4): 7–19 [In Russian]. https://doi.org/10.15356/2076-6734-2014-4-7-19
  14. Macheret Yu.Ya., Kutuzov S.S., In Matskovsky.V., Lavren-tiev I. On the assessment of the volume of ice of mountain glaciers. Led I sneg. Ice and Snow. 2013, 53 (1): 5–15 [In Russian]. https://doi.org/10.15356/2076-6734-2013-1-5-15
  15. Moskalenko I.G., Seliverstov Yu.P., Chistyakov K.V. Mongun-Taiga mountain range (Inner Asia). Gorniy massif Mongun-Taiga (Vnutrennaya Azia). Opit ecologo-grograficheskoy harakteristiki. Experience of ecological and geographical characteristics. Saint Petersburg: Publishing House of Russian Geographical Society. 1993: 94 [In Russian].
  16. Narozhniy Yu.K., Nikitin S.A. Present-day glaciation of Altai on the boundary of XXI century. Materialy Glyatsiologicheskikh Issledovaniy. Data of Glaciological Studies. 2003, 95: 93–101 [In Russian].
  17. Nikitin S.A. Regularities of the distribution of glacial ice in the Russian Altai, assessment of their reserves and dynamics. Materialy Glyatsiologicheskikh Issledovaniy. Data of Glaciological Studies. 2009, 107: 87–96 [In Russian].
  18. Nikitin S.A., Vesnin A.V., Osipov A.V., Iglovskaya N.V. Results of radiophysical studies of glaciers of the North Chui ridge in Altai. Materialy Glyatsiologicheskikh Issledovaniy. Data of Glaciological Studies. 1993, 87: 188–195 [In Russian].
  19. Nikitin S.A., Vesnin A.V., Osipov A.V., Iglovskaya N.V. Results of radiosonding of glaciers of the Central Altai (North-Chuisky and South-Chuisky ridges). Materialy Glyatsiologicheskikh Issledovaniy. Data of Glaciological Studies. 2000, 88: 145–149 [In Russian].
  20. Nikitin S.A., Menshikov V.A., Vesnin A.V., Selin G.A. Results of sounding Altai glaciers with portable radar. Materialy Glyatsiologicheskikh Issledovaniy. Data of Glaciological Studies. 1986, 56: 116–121 [In Russian].
  21. Petrakov D.A., Lavrentiev I.I., Kovalenko N.V., Usubaliev R.A. Ice thickness, volume and modern changes in the area of the Sary-Tor glacier (Ak-Shyrak massif, inner Tien Shan). Kriosfera Zemli. Cryosphere of the Earth. 2014, 18 (3): 91–100 [In Russian].
  22. Revyakin V.S. P. 8. Basins of the Kargy river, Mogen-Buren. Katalog lednikov SSSR. Catalog of glaciers of the USSR. Leningrad: Hydrometeoizdat. 1978: 80 p. [In Russian].
  23. Seliverstov Yu.P. Modern glaciation of the Mungun Taiga (southwest of Tuva). Izvestiya vsesoyuznogo geograficheskogo obshchestva. Proce. VGO. 1972, 104 (1): 40–44 [In Russian].
  24. Seliverstov Yu.P., Moskalenko I.G., Novikov S.A. Modern glaciation of the Mongun Taiga massif (Inner Asia) and agroclimatic conditions of its existence. Materialy Glyatsiologicheskikh Issledovaniy. Data of Glaciological Studies. 1997, 82: 33–42 [In Russian].
  25. Sergeev I.S., Shtykova N.B., Ganyushkin D.A. Glebova A.B. Measuring the power of glaciers based on the analysis of the variable component of the potential in vertical electric sounding. Mezhdistsiplinarnyye nauchnyye issledovaniya v tselyakh osvoyeniya gornykh i arkticheskikh territoriy. Interdisciplinary scientific research for the development of mountain and Arctic territories. Sochi: Publishing House of the Institute of Geography of the Russian Academy of Sciences. 2018: 79 [In Russian].
  26. Khromova T.E., Nosenko G.A., Glazovsky A.F., Muravyev A.Ya., Nikitin S.A., Lavrentiev I.I. New Catalog of glaciers of Russia according to satellite data (2016–2019). Led i Sneg. Ice and Snow. 2021, 61 (3): 341–358 [In Russian]. https://doi.org/10.31857/S2076673421030093.
  27. Chistyakov K.V. Landscapes of Inner Asia: Dynamics, history and use Doctor of Sciences in Geography. St. Petersburg. 2001: 269 p [In Russian].
  28. Chistyakov K.V., Ganyushkin D.A., Moskalenko I.G., Zelepukina E.S., Amosov M.I., Volkov I.V., Glebova A.B., Guzel N.I., Zhuravlev S.A., Prudnikova T.N., Pryakhi-na G.V. Gorniy massif Mongun-Taiga. Mongun-Taiga mountain massif. Saint Petersburg: Art-Ekspress. 2012: 310 p. [In Russian].
  29. Agatova A., Nepop R., Ganyushkin D., Otgonbayar D., Griga S., Ovchinnikov I. Specific effects of the 1988 earthquake on the topography and glaciation of the Tsambagarav ridge (Mongolian Altai) based on remote sensing and field data. Remote sensing. 2022, 14 (4): 917 p. https://doi.org/doi.org/10.3390/rs14040917
  30. Bahr D.B., Pfeffer W.T., Kaser G. A review of volume-area scaling of glaciers. Reviews of Geophysics. 2015, 53 (1): 95–140. https://doi.org/10.1002/2014RG000470
  31. Braithwaite R.J. From Doktor Kurowski’s Schneegrenze to our modern glacier equilibrium line altitude (ELA). The Cryosphere. 2015, 9 (6): 2135–2148. https://doi.org/10.5194/tc-9-2135-2015
  32. Chotchaev K., Zaalishvili V., Dzeranov B. Natural endogenous factors of geoecological transformation of the mountainous part of North Ossetia. E3S Web of Conferences. EDP Sciences. 2020, 164: 07025. https://doi.org/10.1051/e3sconf/202016407025
  33. Emmer A., Vilimek V., Klimesh Ya. Project of the database on floods caused by emissions from glacial lakes (GLOFs). Science of landslides for safer geoecology. International Program on Landslides (IPL). Springer International Publishing House. 2014, 1: 107–111. https://doi.org/10.1007/978-3-319-04999-1_10
  34. Frey H., Machgut H., Huss M., Haggel S., Bayracharya S., Bolch T., Kulkarni A., Linsbauer A., Salzmann N., Stoffel M. Estimation of the volume of glaciers in the Himalayan-Karakoram region using various methods. Cryosphere. 2014, 8 (6): 2313–2333. https://doi.org/10.5194/tc-8-2313-2014
  35. Ganyushkin D., Bantcev D., Derkach E., Agatova A., Nepop R., Griga S., Rasputina V., Ostanin O., Dyakova G., Pryakhina G., Chistyakov K., Kurochkin Y., Gorbunova, Y. Post-Little Ice Age Glacier Recession in the North-Chuya Ridge and Dynamics of the Bolshoi Maashei Glacier, Alta. Remote Sensing. 2023, 15 (8): 2186. https://doi.org/10.3390/rs15082186
  36. Ganyushkin D.A., Chistyakov K.V., Volkov I.V., Bantcev D.V., Kunaeva E.P., Andreeva T.A., Terekhov A.V., Otgonbayar D. Present glaciers of Tavan Bogd massif in the Altai Mountains, Central Asia, and their changes since the Little Ice Age. Geosciences. 2018, 8 (11): 414. https://doi.org/10.3390/geosciences8110414
  37. Ganyushkin D., Chistyakov K., Derkach E., Bantcev D., Kunaeva E., Terekhov A., Rasputina V. Glacier Recession in the Altai Mountains after the LIA Maximum. Remote Sensing. 2022, 14 (6): 1508. https://doi.org/10.3390/rs14061508
  38. Ganyushkin D., Chistyakov K., Kunaeva E. Fluctuations of glaciers in the mountains of the southeastern Russian Altai and northwestern Mongolia after the maximum of the Little Ice Age. Ecological Earth Sciences. 2015, 74 (3): 1883–1904. https://doi.org/10.1007/s12665-015-4301-2
  39. gdem.ersdac.jspacesystems.or.jp. Retrieved from: https://gdemdl.aster.jspacesystems.or.jp (Last access: 14 March 2023).
  40. Global Land Ice Measurements from Space. Retrieved from: https://www.glims.org/ (Last access: 24 April 2023).
  41. Herren P.A., Eichler A., Machguth H., Papina T., Tobler L., Zapf A., Schwikowski M. The onset of Neoglaciation 6000 years ago in western Mongolia revealed by an ice core from the Tsambagarav mountain range. Quaternary Science Reviews. 2013, 69: 59–68. https://doi.org/10.1016/j.quascirev.2013.02.025
  42. Kadota T., Gombo D., Kalsan P., Namgur D. Ohata T. Glaciological research in the Mongolian Altai, 2003-2009. Bulletin of Glaciological Research. 2011, 29: 41–50.
  43. Krumvide B.S., Kamp U., Leonard G.J., Kargel J.S., Dashtseren A., Walter M. Recent changes of glaciers in the mountains of the Mongolian Altai: case studies of Munkh Khairkhan and Tavan Bogda. Global measurements of ground ice from space. 2014: 481–508. https://doi.org/10.1007/978-3-540-79818-7_22
  44. Kurowsky L. Die Hohe Der Schneegrenze Mit Besonderer Berucksichtigung Der Finsteraargorngruppe. Pencks Geogr. Abh. 1891, 5: 115–160. [In German].
  45. Linsbauer A., Paul F., Heberly U. Modeling the distribution of glacier thickness and bed relief over entire mountain ranges using glabtop: the application of a fast and reliable approach. Journ. of Geophysical Research: The Surface of the Earth. 2012, 117 (3): 1–17. https://doi.org/10.1029/2011JF002313
  46. Loibl D., Lemkul F., Griesinger J. Reconstruction of glacier retreat since the Little Ice Age in Southern Tibet by mapping glaciers and calculating the height of the equilibrium. Geomorphology. 2014, 214: 22–39. https://doi.org/10.1016/j.geomorph.2014.03.018
  47. Nye J.F. Glacier flow in a channel of rectangular, elliptical or parabolic cross-section. Journ. of glaciology. 1965, 5 (41): 661–690. https://doi.org/10.3189/S0022143000018670
  48. Paul F., Linsbauer A. Modeling of glacier bed relief based on glacier contours, central branches and DEM. International Journ. of Geographical Informatics. 2012, 26 (7): 1173–1190. https://doi.org/10.1080/13658816.2011.627859
  49. Randolph Glacier Inventory Retrieved from: https://www.glims.org/RGI/index.html (Last access: 24 April 2023).
  50. Raup B., Khalsa S.J.S. GLIMS Analysis Tutorial. National Snow and Ice Data Center, Boulder, CO. 2010. Retrieved from: http://www.glims.org/MapsAndDocs/assets/GLIMS_Analysis_Tutorial_letter.pdf., p. 5 (Last access: 24 April 2023)

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (1MB)
3.

Download (1MB)
4.

Download (763KB)
5.

Download (2MB)
6.

Download (1MB)
7.

Download (476KB)
8.

Download (747KB)

Copyright (c) 2023 С.А. Грига, Д.А. Ганюшкин, Д.В. Банцев, М.Р. Николаев, М.П. Кашкевич, К.А. Ибраев

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies