Intra-Annual Variability of the Surface Ablation of the Aldegondabreen Glacier (Spitsbergen)

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The intra-annual variability of the surface ice ablation on the 5.5 km2 Aldegondabreen glacier (Spitsbergen Island, Barentsburg area) is presented. The ice ablation was measured during five seasons (2018–2022) at the two stakes, installed in the lower part of the glacier and at the index site, where the amount of ablation numerically coincides with the glacier-averaged value with the r = 0.99 agreement. The temporal resolution of the ice ablation data is uneven and varies from 3 to 45 days. To carry out the correlation analysis, meteorological data from the automated weather station located near the glacier terminus are used. The ice ablation rates, obtained after normalization for the number of days between stake readings, have a tight correlation with both the air temperature and the downwelling shortwave radiation flux for most of the seasons, in 2018–2021 (r = 0.71–0.99). Surface air temperature and short-wave radiation are closely related; the above estimates indicate the leading role of short-wave radiation in the summer ablation of the glacier in the period 2018–2021. The year 2022 became anomalous, as the correlation with the shortwave radiation significantly decreased (r = 0.21–0.34). The European heat wave of 2022, which also affected the Svalbard archipelago, interrupted the ordinary intra-annual variability of the air temperature, causing the unprecedented ice melt on Aldegondabreen in September. The predicted increase in frequency and intensity of the future heat waves will result in an increased role of turbulent fluxes in the surface energy balance of the low-elevated Svalbard glaciers. The article demonstrates how the empirically identified dependencies can change from season to season in a non-stationary climate.

Sobre autores

U. Prokhorova

Arctic and Antarctic Research Institute

Autor responsável pela correspondência
Email: uvprokhorova@aari.ru
Russia, Saint

A. Terekhov

Arctic and Antarctic Research Institute

Email: uvprokhorova@aari.ru
Russia, Saint

V. Demidov

Arctic and Antarctic Research Institute

Email: uvprokhorova@aari.ru
Russia, Saint

B. Ivanov

Arctic and Antarctic Research Institute; Saint Petersburg State University

Email: uvprokhorova@aari.ru
Russia, Saint; Russia, Saint

S. Verkulich

Arctic and Antarctic Research Institute

Email: uvprokhorova@aari.ru
Russia, Saint

Bibliografia

  1. Borisik A.L., Novikov A.L., Glazovsky A.F., Lavrentiev I.I., Verkulich S.R. Structure and dynamics of Aldegondabreen, Spitsbergen, according to repeated GPR surveys in 1999, 2018 and 2019. Led i Sneg. Ice and Snow. 2021, 61 (1): 26–37 [In Russian]. https://doi.org/10.31857/S2076673421010069
  2. Glyaciologiya Shpicbergena. Glaciology of Svalbard. Moscow: Nauka, 1985: 200 p. [In Russian].
  3. Krenke A.N., Khodakov V.G. On the connection between surface melting of glaciers and air temperature. Materialy Glyatsiologicheskikh Issledovaniy. Data of Glaciological Studies. 1966, 12: 153–164. [In Russian].
  4. Prokhorova U.V., Terekhov A.V., Ivanov B.V., Verkulich S.R. Calculation of the heat balance components of the Aldegonda glacier (Western Spitsbergen) during the ablation period according to the observations of 2019. Kriosfera Zemli. Earth’s Cryosphere. 2021, 25 (3): 50–60. [In Russian].
  5. Prokhorova U., Terekhov, A., Ivanov, B., Demidov, V. Heat balance of a low-elevated Svalbard glacier during the ablation season: A case study of Aldegondabreen. Arctic, Antarctic, and Alpine Research. 2023. 55 (1): 2190057.
  6. Sidorova O.R., Tarasov G.V., Verkulich S.R., Chernov R.A. Surface ablation variability of mountain glaciers of West Spitsbergen. Problemy Arktiki i Antarktiki. Arctic and Antarctic Research. 2019, 65 (4): 438–448. [In Russian].
  7. Terekhov A.V., Tarasov G.V., Sidorova O.R., Demidov V.E., Anisimov M.A., Verkulich S.R. Estimation of mass balance of Aldegondabreen (Spitsbergen) in 2015-2018 based on ARCTICDEM, geodetic and glaciological measurements. Led i Sneg. Ice and Snow. 2020, 60 (2): 192–200. [In Russian].
  8. Chernov R.A., Kudikov A.V., Vshivtseva T.V., Osokin N.I. Estimation of the surface ablation and mass balance of Eustre Grønfjordbreen (Spitsbergen). Led i Sneg. Ice and Snow. 2019, 59 (1): 59–66. [In Russian].
  9. Chernov R.A., Muraviev A.Y. Contemporary changes in the area of glaciers in the western part of the Nordenskjold Land (Svalbard). Led i Sneg. Ice and Snow. 2018, 58 (4): 462–472. [In Russian].
  10. Arnold N.S., Rees W.G., Hodson A.J., Kohler J. Topographic controls on the surface energy balance of a high Arctic valley glacier. Journ. of Geophys. Research: Earth Surface. 2006, 111 (F2).
  11. Bonan D.B., Christian J.E., Christianson K. Influence of North Atlantic climate variability on glacier mass balance in Norway, Sweden and Svalbard. Journ. of Glaciology. 2019, 65 (252): 580–594 https://doi.org/10.1017/jog.2019.35
  12. Copernicus Climate Bulletins. Retrieved from: https://climate.copernicus.eu/climate-bulletins (Last access: 13 February 2023).
  13. Di Capua G., Sparrow S., Kornhuber K., Rousi E., Osprey S., Wallom D., van den Hurk B., Coumou D. Drivers behind the summer 2010 wave train leading to Russian heatwave and Pakistan flooding. Climate and Atmospheric Science. 2021, 4 (1): 55.
  14. Charalampidis C., Fischer A., Kuhn M., Lambrecht A., Mayer C., Thomaidis K., Weber M. Mass-budget anomalies and geometry signals of three Austrian glaciers. Frontiers in earth science. 2018: 218.
  15. Gjelten H.M., Nordli Ø., Isaksen K., Førland E.J., Svia-shchennikov P.N., Wyszynski P., Prokhorova U.V., Przybylak R., Ivanov B.V., Urazgildeeva A.V. Air temperature variations and gradients along the coast and fjords of western Spitsbergen. Polar Research. 2016, 35 (1): 29878.
  16. Grosval’d M.G., Kotlyakov V.M. Present-day glaciers in the USSR and some data on their mass balance. Journ. of Glaciology. 1969, 8 (52): 9–22.
  17. Hagen J.O., Eiken T., Kohler J., Melvold K. Geometry changes on Svalbard glaciers: mass-balance or dynamic response? Annals of Glaciology. 2005, 42: 255–261.
  18. Hagen J.O., Liestøl O. Long-term glacier mass-balance investigations in Svalbard, 1950–88. Annals of Glaciology. 1990, 14: 102–106. https://doi.org/10.3189/S0260305500008351
  19. Hanssen-Bauer I. Climate in Svalbard 2100. A knowledge base for climate adaptation. 2019: 208 p.
  20. Hock R. Glacier melt: a review of processes and their modeling. Progress in physical geography. 2005, 29 (3): 362–391.
  21. IPCC: Summary for Policymakers. In: Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. Cambridge: Cambridge University Press, 2018: 3–24.
  22. IPCC, 2021: Summary for Policymakers. In: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2021.
  23. Isaksen K., Nordli Ø., Førland E.J., Łupikasza E., Eastwood S., Niedźwiedź T. Recent warming on Spitsbergen–Influence of atmospheric circulation and sea ice cover. Journ. of Geophysical Research: Atmospheres. 2016, 121 (20): 11913–11931.
  24. Isaksen K., Nordli Ø., Ivanov B., Køltzow M., Aaboe S., Gjelten1 H., Mezghani A., Eastwood1 S., Førland E., Benestad R., Hanssen‑Bauer I., Brækkan R., Sviashchennikov P., Demin V., Revina A., Karandasheva T. Exceptional warming over the Barents area. Scientific reports. 2022, 12 (1): 1–18.
  25. Lefauconnier B., Hagen J.O. Glaciers and climate in Svalbard: statistical analysis and reconstruction of the Brøggerbreen mass balance for the last 77 years. Annals of Glaciology. 1990, 14: 148–152.
  26. Noël B., Jakobs C.L., Van Pelt W. J.J., Lhermitte S., Wouters B., Kohler J., Hagen J.O., Luks B., Reijmer C.H., van de Berg W.G., van den Broeke, M.R. Low elevation of Svalbard glaciers drives high mass loss variability. Nature Communications. 2020, 11 (1): 4597.
  27. Nordli Ø., Przybylak R., Ogilvie A.E., Isaksen K. Long-term temperature trends and variability on Spitsbergen: the extended Svalbard Airport temperature series, 1898–2012. Polar research. 2014, 33 (1): 21349.
  28. Oerlemans J., Hoogendoorn N.C. Mass-balance gradients and climatic change. Journ. of Glaciology. 1989, 35 (121): 399–405. https://doi.org/10.3189/S0022143000009333
  29. Ohmura A. Physical basis for the temperature-based melt-index method. Journ. of Applied Meteorology and Climatology. 2001, 40 (4): 753–761.
  30. O’Neel S., McNeil C., Sass L.C., Florentine C., Baker E.H., Peitzsch E., McGrath D., Fountain A. G., Fagre D. Reanalysis of the US Geological Survey Benchmark Glaciers: long-term insight into climate forcing of glacier mass balance. Journ. of Glaciology. 2019, 65 (253): 850–866.
  31. Robinson P.J. On the definition of a heat wave. Journ. of Applied Meteorology and Climatology. 2001, 40 (4): 762–775.
  32. Schuler T.V., Kohler J., Elagina N., Hagen J.O.M., Hodson A.J., Jania J.A., Kääb A.M., Luks B., Małecki J., Moholdt G., Pohjola V.A., Sobota I., Van Pelt W.J. Reconciling Svalbard glacier mass balance. Frontiers in Earth Science. 2020: 156.
  33. Terekhov A.V., Verkulich S., Borisik A., Demidov V., Prokho rova U., Romashova K., Anisimov M., Sidorova O., Tarasov G. Mass balance, ice volume, and flow velocity of the Vestre Grønfjordbreen (Svalbard) from 2013/14 to 2019/20. Arctic, Antarctic, and Alpine Research. 2022, 54 (1): 584–602. https://doi.org/10.1080/15230430.2022.2150122
  34. Vincent C., Fischer A., Mayer C., Bauder A., Galos S.P., Funk M., Thibert E., Six D., Braun L., Huss M. Common climatic signal from glaciers in the European Alps over the last 50 years. Geophysical Research Letters. 2017, 44 (3): 1376–1383.
  35. Zou X., Ding M., Sun W., Yang D., Liu W., Huai B., Jin S., Xiao C. The surface energy balance of Austre Lovénbreen, Svalbard, during the ablation period in 2014. Polar Research. 2021, 40: 5318.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (1MB)
3.

Baixar (78KB)
4.

Baixar (50KB)
5.

Baixar (276KB)

Declaração de direitos autorais © У.В. Прохорова, А.В. Терехов, В.Э. Демидов, С.Р. Веркулич, Б.В. Иванов, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies