Outburst of the Spartakovskoye Glacier-Dammed Lake and Changes of the Outlet Glacier of the Semyonov–Tyan-Shansky Ice Cap, Severnaya Zemlya in 2021

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

In the second half of August 2021, outburst flood from the Spartakovskoe Lake, one of the largest glacier-dammed lakes in the Russian sector of the Arctic, occurred on the Bolshevik Island (the Severnaya Zemlya archipelago). The lake hollow was drained. The volume of water discharged from the lake into the Spartak fjord was about 376 ± 21 mln. m3. Only 5 years have passed since the last outburst of the lake in August 2016. The lake hollow was filled with water faster than in the period 2006–2016. The volume of runoff into the lake increased significantly due to more intensive surface ablation on the glaciers of the drainage basin during the anomalously warm summers in 2018–2021. For the up-floating of the ice dam restraining the lake overflowing, the height of the water edge in the lake before the outburst should have been about 113 m. Compared to the state of 2016, the maximum possible water level in the lake has dropped by about 10 m. That was a result of lowering of the glacier surface and, accordingly, a decrease in the thickness of the dam ice. The cartographic method was used to find a location of the area of the greatest depression of the dam surface, the occurrence was conditioned by the development of the under-ice runoff channel in 2016. It can be assumed that during the lake outburst in the second half of August 2021, its location was approximately the same as in 2016. The water level in the lake will no longer be able to rise to the watershed with the Bazovaya River basin (123 m). The flow from the lake to the Bazovaya River is now impossible. The glacial-dammed Lake Spartakovskoe is now a part of only the Kara Sea basin. Under the present-day climatic conditions, the surface of the ice dam decreases and, accordingly, the volume of runoff into the lake increases. In the future, this will probably result in more frequent outburst of the lake, a decrease in its volume, and accordingly, a reduction of the water volume discharging into the lake.

Авторлар туралы

A. Muraviev

Institute of Geography, Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: anton-yar@rambler.ru
Russia, Moscow

R. Chernov

Institute of Geography, Russian Academy of Sciences

Email: anton-yar@rambler.ru
Russia, Moscow

Әдебиет тізімі

  1. World Atlas of Snow and Ice Resources. V. 1. Moscow: Russian Academy of Sciences, 1997: 392 p.
  2. Barbash V.R., Govorukha L.S., Zotikov I.A. O temperaturnom sostoyanii tolshi kupola Vavilova. About the temperature state of the Vavilov ice cap stratum // Proc. of AARI. 1981, 367: 54–57 [In Russian].
  3. Bolshiyanov D.U., Makeev V.M. Arkhipelag Severnaya Zemlya. Oledenenie, istoriya razvitiya prirodnoi sredi. Severnaya Zemlya archipelago. Glaciation, history of the natural environment development. St. Petersburg: Hydrometeoizdat, 1995: 214 p. [In Russian].
  4. Bolshiyanov D.Y., Sokolov V.T., Yozhikov I.S., Bulatov R.K., Rachkova A.N., Fedorov G.B., Paramzin A.S. Conditions of the alimentation and the variability of glaciers of the Severnaya Zemlya Archipelago from observations of 2014–2015. Led i Sneg. Ice and Snow. 2016, 56 (3): 358–368 [In Russian]. https://doi.org/10.15356/2076-6734-2016-3-358-368
  5. Bryazgin N.N., Unac R.I. Air temperature and precipitation on the northern earth during periods of ablation and accumulation. Geograficheskie i glaytsiologicheskie issledovaniya v polyarnykh stranakh. Geographical and Glaciological Studies in Polar Countries. Leningrad: Hydrometeoizdat, 1988: 70–81 [In Russian].
  6. Vasilevich I.I., Chernov R.A. Estimation of snow reserves in the watercourseby the georadiolocation method in the Arctic region // Problemy Arktiki i Antarktiki. Arctic and Antarctic Research. 2018, 64 (1): 5–15 [In Russian]. https://doi.org/10.30758/0555-2648-2018-64-1-5-15.
  7. Glazovsky A.F., Macheret Yu.Ya. Voda v lednikakh. Metody i rezul’taty geofizicheskikh i distantsionnykh issledovaniy. Water in glaciers. Methods and results of geophysical and remote sensing studies. M.: GEOS, 2014: 528 p. [In Russian].
  8. Govorukha L.S. Sovremennoe nazemnoe oledenenie sovetskoi Arktiki. Modern ground glaciation of the Soviet Arctic. Leningrad: Hydrometeoizdat, 1989: 256 p. [In Russian].
  9. Katalog lednikov SSSR. USSR Glacier Inventory. V. 16. Is. 1. Pt. 1. Leningrad: Hydrometeoizdat, 1980: 80 p. [In Russian].
  10. Krenke A.N., Khodakov V.G. O svyazi poverkhnostnogo tayaniya lednikov s temperaturoi vozdukha. Connection of the surface melting glaciers and air temperature // Materialy Glyatsiologicheskikh Issledovaniy. Data of Glaciological Studies. 1966, 12: 153–164 [In Russian].
  11. Chernov R.A., Muraviev A.Ya. Catastrophic outburst-flood of the Spartakovskoye glacier-dammed lake on the Bolshevik Island (Severnaya Zemlya). Kriosfera Zemli. Earth’s Cryosphere. 2020, 24 (4): 58–68. https://doi.org/10.21782/EC2541-9994-2020-4(50-59).
  12. Chernov R.A., Romashova K.V. Current state of glacial lakes on Svalbard. Kriosfera Zemli. Earth’s Cryosphere. 2022, 26 (1): 36–45 [In Russian]. https://doi.org/10.15372/KZ20220104
  13. AARI electronic archive of urgent meteorological and aerological observations of the scientific research station“Ice base “Baranov foreland” for 2013–2021. Retrieved from: http://old.aari.ru/main.php?lg=0&id=405. (Last access: 10.06.2022). [In Russian].
  14. Fan Y., Ke C., Shen X., Xiao Y., Livingstone S.J., Sole A.J. Subglacial lake activity beneath the ablation zone of the Greenland Ice Sheet. The Cryosphere Discuss. 2022. [preprint]. https://doi.org/10.5194/tc-2022-122.
  15. Harrison S., Karge J.S., Hugge C., Reynolds J., Shugar D.H., Betts R.A., Emmer A., Glasser N., Haritashya U.K., Klimeš J., Reinhardt L., Schaub Y., Wiltshire A., Regmi D., Vilímek V. Climate change and the global pattern of moraine-dammed glacial lake outburst floods. The Cryosphere. 2018, 12 (4): 1195–1209. https://doi.org/10.5194/tc-12-1195-2018.
  16. Hugonnet R., McNabb R., Berthier E., Menounos B., Nuth C., Girod L., Farinotti D., Huss M., Dussaillant I., Brun F., Kääb A. Accelerated global glacier mass loss in the early twenty-first century. Nature. 2021, 592: 726–731. https://doi.org/10.1038/s41586-021-03436-z.
  17. Hugonnet R., McNabb R., Berthier E., Menounos B., Nuth C., Girod L., Farinotti D., Huss M., Dussaillant I., Brun F., Kääb A. Accelerated global glacier mass loss in the early twenty-first century – Dataset. 2021б. https://doi.org/10.6096/13.
  18. Openaltimetry. Retrieved from: https://openaltimetry.org/citation.htm (Last access: 12 September 2022).
  19. ECMWF Reanalysis v5 (ERA5). Retrieved from: https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5 (Last access: 12 September 2022).
  20. pgc.umn.ed. Retrieved from: https://www.pgc.umn.edu/data/arcticdem (Last access: 12 September 2022).
  21. Liang Y., Bi H., Huang H., Lei R., Liang X., Cheng B., Wang Y. Contribution of warm and moist atmospheric flow to a record minimum July sea ice extent of the Arctic in 2020. The Cryosphere. 2022, 16 (3): 1107–1123. https://doi.org/10.5194/tc-16-1107-2022.
  22. Monthly Reanalysis Timeseries from Climate Reanalyzer. Climate Change Institute, University of Maine, USA. Retrieved from. https://climatereanalyzer.org/reanalysis/monthly_tseries/. (Last access: 10.06.2022).
  23. Nie Y., Qiao L., Jida W., Zhang Y., Sheng Y., Liu S. An inventory of historical glacial lake outburst floods in the Himalayas based on remote sensing observations and geomorphological analysis. Geomorphology. 2018, 308: 91–106. https://doi.org/10.1016/j.geomorph.2018.02.002.
  24. Porter C., Morin P., Howat I., Noh M.-J., Bates B., Peterman K., Keesey S., Schlenk M., Gardiner J., Tomko K., Willis M., Kelleher C., Cloutier M., Husby E., Foga S., Nakamura H., Platson M., Wethington M.Jr., Williamson C., Bauer G., Enos J., Arnold G., Kramer W., Becker P., Doshi A., D’Souza C., Cummens P., Laurier F., Bojesen M. “ArcticDEM”. Harvard Dataverse. 2018. V1. https://doi.org/10.7910/ DVN/OHHUKH
  25. SENTINEL 2 Data Quality Report. ESA. Ref. S2-PDGS-MPC-DQR. 2022. Is. 71: 53 p. Retrieved from: https://sentinel.esa.int/documents/247904/685211/Sentinel-2_L1C_Data_Quality_Report. (Last access: 10.06.2022).
  26. Smith B., Adusumilli S., Csathó B.M., Felikson D., Fricker H.A., Gardner A., Holschuh N., Lee J., Nilsson J., Paolo F.S., Siegfried M.R., Sutterley T., and the ICESat-2Science Team. 2021. ATLAS/ICESat-2 L3A Land Ice Height,Version 5. Boulder, Colorado USA. NASA National Snow and Ice Data Center Distributed Active Archive Center. https://doi.org/10.5067/ATLAS/ATL06.005.
  27. Strozzi T., Wiesmann A., Kääb A., Joshi S., Mool P. Glacial lake mapping with very high resolution satellite SAR data // NHESS. 2012, 12 (8): 2487–2498. https://doi.org/10.5194/nhess-12-2487-2012.

Қосымша файлдар


© А.Я. Муравьев, Р.А. Чернов, 2023

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>