Mitophagy in age-dependent neurodegeneration
- Authors: Sukhorukov V.S.1,2, Egorova A.V.1,2, Romanenko A.S.1,2, Ryabova M.S.1,2, Krasilnikova A.P.3
-
Affiliations:
- Russian Center of Neurology and Neurosciences
- Pirogov Russian National Research Medical University
- M.V. Lomonosov Moscow State University
- Issue: Vol 17, No 4 (2025)
- Pages: 64-71
- Section: Reviews
- URL: https://journals.rcsi.science/2075-8251/article/view/365060
- DOI: https://doi.org/10.32607/actanaturae.27674
- ID: 365060
Cite item
Abstract
Mitochondrial dysfunction is one of the pathogenetic mechanisms of neuronal damage during aging. The high energy dependence of neurons makes them particularly vulnerable to age-related changes accompanied by oxidative stress and impaired energy metabolism. The maintenance of a pool of functional mitochondria is regulated by mitophagy, which ensures the utilization of damaged organelles, thereby preventing the progression of mitochondrial dysfunction. Brain aging is accompanied by a reduced level of activity of metabolic processes, aggravated mitochondrial dysfunction, and an increased risk of developing neurodegenerative diseases such as Alzheimer’s disease and Parkinson’s disease. This review highlights the molecular and signaling pathways of mitophagy and its dysregulation during physiological and pathological aging, which is of particular interest for identifying pharmaceutical targets and developing potential therapies for neurodegenerative conditions.
Keywords
About the authors
Vladimir S. Sukhorukov
Russian Center of Neurology and Neurosciences; Pirogov Russian National Research Medical University
Email: Vsukhorukov@gmail.ru
ORCID iD: 0000-0002-0552-6939
Russian Federation, Moscow, 125367; Moscow, 117513
Anna V. Egorova
Russian Center of Neurology and Neurosciences; Pirogov Russian National Research Medical University
Author for correspondence.
Email: AV_Egorova@bk.ru
ORCID iD: 0000-0001-7112-2556
SPIN-code: 9663-8645
Scopus Author ID: 57193900543
ResearcherId: HPH-7378-2023
Russian Federation, Moscow, 125367; Moscow, 117513
Aleksandr S. Romanenko
Russian Center of Neurology and Neurosciences; Pirogov Russian National Research Medical University
Email: devlton@mail.ru
ORCID iD: 0009-0000-6349-6566
Russian Federation, Moscow, 125367; Moscow, 117513
Maria S. Ryabova
Russian Center of Neurology and Neurosciences; Pirogov Russian National Research Medical University
Email: ryabovamarias@gmail.com
ORCID iD: 0009-0003-5596-7630
Russian Federation, Moscow, 125367; Moscow, 117513
Anna P. Krasilnikova
M.V. Lomonosov Moscow State University
Email: anya.egorova.pavl@mail.ru
ORCID iD: 0009-0006-2258-6155
Russian Federation, Moscow, 119234
References
- Loeffler DA. Influence of Normal Aging on Brain Autophagy: A Complex Scenario. Front Aging Neurosci. 2019;11:49. doi: 10.3389/fnagi.2019.00049
- Hou Y, Dan X, Babbar M, et al. Ageing as a risk factor for neurodegenerative disease. Nat Rev Neurol. 2019;15(10):565−581. doi: 10.1038/s41582-019-0244-7
- Mishra E, Thakur MK. Alterations in hippocampal mitochondrial dynamics are associated with neurodegeneration and recognition memory decline in old male mice. Biogerontology. 2022;23(2):251−271. doi: 10.1007/s10522-022-09960-3
- Gleixner AM, Pulugulla SH, Pant DB, Posimo JM, Crum TS, Leak RK. Impact of aging on heat shock protein expression in the substantia nigra and striatum of the female rat. Cell Tissue Res. 2014;357(1):43−54. doi: 10.1007/s00441-014-1852-6
- Cai Q, Jeong YY. Mitophagy in Alzheimer’s Disease and Other Age-Related Neurodegenerative Diseases. Cells. 2020;9(1):150. doi: 10.3390/cells9010150
- Garza-Lombó C, Pappa A, Panayiotidis MI, Franco R. Redox homeostasis, oxidative stress and mitophagy. Mitochondrion. 2020;51:105−117. doi: 10.1016/j.mito.2020.01.002
- Lukyanova LD. Signaling mechanisms of hypoxia. Moscow: Russian Academy of Sciences; 2019. (in Russian).
- Oliver DMA, Reddy PH. Molecular Basis of Alzheimer’s Disease: Focus on Mitochondria. J Alzheimers Dis. 2019;72(s1):S95–116. doi: 10.3233/jad-190048
- Lou G, Palikaras K, Lautrup S, Scheibye-Knudsen M, Tavernarakis N, Fang EF. Mitophagy and Neuroprotection. Trends Mol Med. 2020;26(1):8–20. doi: 10.1016/j.molmed.2019.07.002
- Jang JY, Blum A, Liu J, Finkel T. The role of mitochondria in aging. J Clin Invest. 2018;128(9):3662–3670. doi: 10.1172/jci120842
- Sukhorukov V, Voronkov D, Baranich T, Mudzhiri N, Magnaeva A, Illarioshkin S. Impaired Mitophagy in Neurons and Glial Cells during Aging and Age-Related Disorders. Int J Mol Sci. 2021;22(19):10251. doi: 10.3390/ijms221910251
- Fivenson EM, Lautrup S, Sun N, et al. Mitophagy in neurodegeneration and aging. Neurochem Int. 2017;109:202–209. doi: 10.1016/j.neuint.2017.02.007
- Freidlin IS, Mammedova JT, Strikova EA. The Role of Autophagy in Infections. Russ J Physiol. 2019;105(12):1486–1501. doi: 10.1134/s0869813919120057
- Kwon YT, Ciechanover A. The Ubiquitin Code in the Ubiquitin-Proteasome System and Autophagy. Trends Biochem Sci. 2017;42(11):873–886. doi: 10.1016/j.tibs.2017.09.002
- Turco E, Savova A, Gere F, et al. Reconstitution defines the roles of p62, NBR1 and TAX1BP1 in ubiquitin condensate formation and autophagy initiation. Nat Commun. 2021;12(1):5212. doi: 10.1038/s41467-021-25572-w
- Walker SA, Ktistakis NT. Autophagosome Biogenesis Machinery. J Mol Biol. 2020;432(8):2449–2461. doi: 10.1016/j.jmb.2019.10.027
- Nakatogawa H, Ichimura Y, Ohsumi Y. Atg8, a Ubiquitin-like Protein Required for Autophagosome Formation, Mediates Membrane Tethering and Hemifusion. Cell. 2007;130(1):165–178. doi: 10.1016/j.cell.2007.05.021
- Uemura T, Yamamoto M, Kametaka A, et al. A Cluster of Thin Tubular Structures Mediates Transformation of the Endoplasmic Reticulum to Autophagic Isolation Membrane. Mol Cell Biol. 2014;34(9):1695–1706. doi: 10.1128/mcb.01327-13
- Müller AJ, Proikas-Cezanne T. Function of human WIPI proteins in autophagosomal rejuvenation of endomembranes? FEBS Lett. 2015;589(14):1546–1551. doi: 10.1016/j.febslet.2015.05.008
- Dikic I, Elazar Z. Mechanism and medical implications of mammalian autophagy. Nat Rev Mol Cell Biol. 2018;19(6):349–364. doi: 10.1038/s41580-018-0003-4
- Melia TJ, Lystad AH, Simonsen A. Autophagosome biogenesis: From membrane growth to closure. J Cell Biol. 2020;219(6): e202002085. doi: 10.1083/jcb.202002085
- Lamark T, Johansen T. Mechanisms of Selective Autophagy. Annu Rev Cell Dev Biol. 2021;37:143–169. doi: 10.1146/annurev-cellbio-120219-035530
- Vargas JNS, Wang C, Bunker E, et al. Spatiotemporal Control of ULK1 Activation by NDP52 and TBK1 during Selective Autophagy. Mol Cell. 2019;74(2):347−362.e6. doi: 10.1016/j.molcel.2019.02.010
- Yim WWY, Mizushima N. Lysosome biology in autophagy. Cell Discov. 2020;6:6 doi: 10.1038/s41421-020-0141-7
- Wang JL, Xu CJ. Astrocytes autophagy in aging and neurodegenerative disorders. Biomed Pharmacother. 2020;122:109691. doi: 10.1016/j.biopha.2019.109691
- Rambold AS, Lippincott-Schwartz J. Mechanisms of mitochondria and autophagy crosstalk. Cell Cycle. 2011;10(23):4032–4038. doi: 10.4161/cc.10.23.18384
- Wei Y, Liu M, Li X, Liu J, Li H. Origin of the Autophagosome Membrane in Mammals. Biomed Res Int. 2018;2018:1012789. doi: 10.1155/2018/1012789
- Kleele T, Rey T, Winter J, et al. Distinct fission signatures predict mitochondrial degradation or biogenesis. Nature. 2021;593(7859):435–439. doi: 10.1038/s41586-021-03510-6
- Guan R, Zou W, Dai X, et al. Mitophagy, a potential therapeutic target for stroke. J Biomed Sci. 2018;25(1):87. doi: 10.1186/s12929-018-0487-4
- Swerdlow NS, Wilkins HM. Mitophagy and the Brain Int J Mol Sci. 2020;21(24):9661. doi: 10.3390/ijms21249661
- Skulachev VP, Vyssokikh MY, Chernyak BV, et al. Six Functions of Respiration: Isn’t It Time to Take Control over ROS Production in Mitochondria, and Aging Along with It? Int J Mol Sci. 2023;24(16):12540. doi: 10.3390/ijms241612540
- Bondy SC. Mitochondrial Dysfunction as the Major Basis of Brain Aging. Biomolecules. 2024;14(4):402. doi: 10.3390/biom14040402
- Liu YT, Sliter DA, Shammas MK, et al. Mt-Keima detects PINK1-PRKN mitophagy in vivo with greater sensitivity than mito-QC. Autophagy. 2021;17(11):3753–3762. doi: 10.1080/15548627.2021.1896924
- Rana A, Oliveira MP, Khamoui AV, et al. Promoting Drp1-mediated mitochondrial fission in midlife prolongs healthy lifespan of Drosophila melanogaster. Nat Commun. 2017;8(1):448. doi: 10.1038/s41467-017-00525-4
- Liang W, Moyzis AG, Lampert MA, Diao RY, Najor RH, Gustafsson ÅB. Aging is associated with a decline in Atg9b‐mediated autophagosome formation and appearance of enlarged mitochondria in the heart. Aging Cell. 2020;19(8):e13187. doi: 10.1111/acel.13187
- Tyrrell DJ, Blin MG, Song J, Wood SC, Goldstein DR. Aging Impairs Mitochondrial Function and Mitophagy and Elevates Interleukin 6 Within the Cerebral Vasculature. J Am Heart Assoc. 2020;9(23):e017820. doi: 10.1161/jaha.120.017820
- Gaziev AI, Abdullaev S, Podlutsky A. Mitochondrial function and mitochondrial DNA maintenance with advancing age. Biogerontology. 2014;15(5):417–438. doi: 10.1007/s10522-014-9515-2
- Wood-Kaczmar A, Gandhi S, Yao Z, et al. PINK1 is necessary for long term survival and mitochondrial function in human dopaminergic neurons. PLoS One. 2008;3(6):e2455. doi: 10.1371/journal.pone.0002455
- Qin YY, Pan SY, Dai JR, et al. Alleviation of ischemic brain injury by exercise preconditioning is associated with modulation of autophagy and mitochondrial dynamics in cerebral cortex of female aged mice. Exp Gerontol. 2023;178:112226. doi: 10.1016/j.exger.2023.112226
- Dagda RK. Role of Mitochondrial Dysfunction in Degenerative Brain Diseases, an Overview. Brain Sci. 2018;8(10):178. doi: 10.3390/brainsci8100178
- Ma K, Zhang Z, Chang R, et al. Dynamic PGAM5 multimers dephosphorylate BCL-xL or FUNDC1 to regulate mitochondrial and cellular fate. Cell Death Differ. 2020;27(3):1036–1051. doi: 10.1038/s41418-019-0396-4
- Sulkshane P, Ram J, Thakur A, Reis N, Kleifeld O, Glickman MH. Ubiquitination and receptor-mediated mitophagy converge to eliminate oxidation-damaged mitochondria during hypoxia. Redox Biol. 2021;45:102047. doi: 10.1016/j.redox.2021.102047
- Macdonald R, Barnes K, Hastings C, Mortiboys H. Mitochondrial abnormalities in Parkinson’s disease and Alzheimer’s disease: can mitochondria be targeted therapeutically? Biochem Soc Trans. 2018;46(4):891–909. doi: 10.1042/bst20170501
- Fiesel FC, Springer W. Disease relevance of phosphorylated ubiquitin (p-S65-Ub). Autophagy. 2015;11(11):2125–2126. doi: 10.1080/15548627.2015.1091912
- Wong YC, Holzbaur ELF. Autophagosome dynamics in neurodegeneration at a glance. J Cell Sci. 2015;128(7):1259–1267. doi: 10.1242/jcs.161216
- Takanashi M, Li Y, Hattori N. Absence of Lewy pathology associated with PINK1 homozygous mutation. Neurology. 2016;86(23):2212–2213. doi: 10.1212/wnl.0000000000002744
- Ryan T, Bamm VV, Stykel MG, et al. Cardiolipin exposure on the outer mitochondrial membrane modulates α-synuclein. Nat Commun. 2018;9(1):817. doi: 10.1038/s41467-018-03241-9
- Chung SY, Kishinevsky S, Mazzulli JR, et al. Parkin and PINK1 Patient iPSC-Derived Midbrain Dopamine Neurons Exhibit Mitochondrial Dysfunction and α-Synuclein Accumulation. Stem Cell Reports. 2016;7(4):664–677. doi: 10.1016/j.stemcr.2016.08.012
- Bingol B, Tea JS, Phu L, et al. The mitochondrial deubiquitinase USP30 opposes parkin-mediated mitophagy. Nature. 2014;510(7505):370–375. doi: 10.1038/nature13418
- Bakula D, Scheibye-Knudsen M. MitophAging: Mitophagy in Aging and Disease. Front Cell Dev Biol. 2020;8:239. doi: 10.3389/fcell.2020.00239
- Reddy PH, Yin X, Manczak M, et al. Mutant APP and amyloid beta-induced defective autophagy, mitophagy, mitochondrial structural and functional changes and synaptic damage in hippocampal neurons from Alzheimer’s disease. Hum Mol Genet. 2018;27(14):2502–2516. doi: 10.1093/hmg/ddy154
- Fang EF, Hou Y, Palikaras K, et al. Mitophagy inhibits amyloid-β and tau pathology and reverses cognitive deficits in models of Alzheimer’s disease. Nat Neurosci. 2019;22(3):401–412. doi: 10.1038/s41593-018-0332-9
- Vaillant-Beuchot L, Mary A, Pardossi-Piquard R, et al. Accumulation of amyloid precursor protein C-terminal fragments triggers mitochondrial structure, function, and mitophagy defects in Alzheimer’s disease models and human brains. Acta Neuropathol. 2021;141(1):39–65. doi: 10.1007/s00401-020-02234-7
- Han Y, Wang N, Kang J, Fang Y. β-Asarone improves learning and memory in Aβ1-42-induced Alzheimer’s disease rats by regulating PINK1-Parkin-mediated mitophagy. Metab Brain Dis. 2020;35(7):1109–1117. doi: 10.1007/s11011-020-00587-2
- Chen RH, Chen YH, Huang TY. Ubiquitin-mediated regulation of autophagy. J Biomed Sci. 2019;26(1):80. doi: 10.1186/s12929-019-0569-y
- Martín-Maestro P, Sproul A., Martinez H., et al. Autophagy Induction by Bexarotene Promotes Mitophagy in Presenilin 1 Familial Alzheimer’s Disease iPSC-Derived Neural Stem Cells. Mol Neurobiol. 2019;56(12):8220−8236. doi: 10.1007/s12035-019-01665-y
- Yan J, Liu XH, Han MZ, et al. Blockage of GSK3β-mediated Drp1 phosphorylation provides neuroprotection in neuronal and mouse models of Alzheimer’s disease. Neurobiol Aging. 2015;36(1):211–227. doi: 10.1016/j.neurobiolaging.2014.08.005
- Lee IH. Mechanisms and disease implications of sirtuin-mediated autophagic regulation. Exp Mol Med. 2019;51(9):1–11. doi: 10.1038/s12276-019-0302-7
- Meng H, Yan WY, Lei YH, et al. SIRT3 Regulation of Mitochondrial Quality Control in Neurodegenerative Diseases. Front Aging Neurosci. 2019;11:313. doi: 10.3389/fnagi.2019.00313
- Srikanth V, Maczurek A, Phan T, et al. Advanced glycation endproducts and their receptor RAGE in Alzheimer’s disease. Neurobiol Aging. 2011;32(5):763–777. doi: 10.1016/j.neurobiolaging.2009.04.016
- Sukhorukov VS, Mudzhiri NM, Voronkova AS, Baranich TI, Glinkina VV, Illarioshkin SN. Mitochondrial Disorders in Alzheimer’s Disease. Biochemistry (Mosc). 2021;86(6):667–679. doi: 10.1134/s0006297921060055
- Matheoud D, Sugiura A, Bellemare-Pelletier A, et al. Parkinson’s Disease-Related Proteins PINK1 and Parkin Repress Mitochondrial Antigen Presentation. Cell. 2016;166(2):314–327. doi: 10.1016/j.cell.2016.05.039
Supplementary files

