Пептиды EPFL в регуляции развития и стрессовых ответов у растений

Обложка

Цитировать

Полный текст

Аннотация

Цистеин-богатые пептиды семейства EPF/EPFL (epidermal patterning factor/epidermal patterning factor-like) распространены у растений, начиная со мхов и заканчивая покрытосеменными. EPF/EPFL играют важную роль в морфогенезе – регулируют расположение устьиц, развитие соцветий, функционирование апикальной и латеральной побеговых меристем, закладку проводящих тканей, формирование края листа, а также развитие цветков и плодов. Недавние исследования показали, что EPFL могут быть вовлечены в адаптацию растений к биотическим и абиотическим стрессам. В обзоре рассмотрены структура, механизмы передачи сигнала, филогенетическое распространение и функции пептидов семейства EPF/EPFL.

Об авторах

Александра Денисовна Майборода

Федеральное государственное бюджетное учреждение науки Государственный научный центр Российской Федерации Институт биоорганической химии им. академиков М.М. Шемякина и Ю.А. Овчинникова Российской академии наук

Email: alesandamay@yandex.ru
Россия, Москва, 117997

Арина Андреевна Макеева

Федеральное государственное бюджетное учреждение науки Государственный научный центр Российской Федерации Институт биоорганической химии им. академиков М.М. Шемякина и Ю.А. Овчинникова Российской академии наук

Email: aryamakeeva@gmail.com
Россия, Москва, 117997

Регина Айдаровна Азаркина

Федеральное государственное бюджетное учреждение науки Государственный научный центр Российской Федерации Институт биоорганической химии им. академиков М.М. Шемякина и Ю.А. Овчинникова Российской академии наук

Email: Khazigaleeva.regina@gmail.com
Россия, Москва, 117997

Анна Сергеевна Барашкова

Федеральное государственное бюджетное учреждение науки Государственный научный центр Российской Федерации Институт биоорганической химии им. академиков М.М. Шемякина и Ю.А. Овчинникова Российской академии наук; Федеральное государственное бюджетное научное учреждение «Всероссийский научно-исследовательский институт защиты растений»

Email: barashkova.an@gmail.com
Россия, Москва, 117997; Санкт-Петербург, Пушкин, 196608

Анна Станиславовна Мамаева

Федеральное государственное бюджетное учреждение науки Государственный научный центр Российской Федерации Институт биоорганической химии им. академиков М.М. Шемякина и Ю.А. Овчинникова Российской академии наук

Автор, ответственный за переписку.
Email: AnnetteSt@yandex.ru
Россия, Москва, 117997

Список литературы

  1. Fukuda H, Hardtke CS. Peptide Signaling Pathways in Vascular Differentiation. Plant Physiol. 2020;182(4):1636-1644. doi: 10.1104/pp.19.01259
  2. Mamaeva A, Makeeva A, Ganaeva D. The Small Key to the Treasure Chest: Endogenous Plant Peptides Involved in Symbiotic Interactions. Plants. 2025;14(3):378. doi: 10.3390/plants14030378
  3. Pearce G, Strydom D, Johnson S, Ryan CA. A Polypeptide from Tomato Leaves Induces Wound-Inducible Proteinase Inhibitor Proteins. Science. 1991;253(5022):895-897. doi: 10.1126/science.253.5022.895
  4. Tavormina P, De Coninck B, Nikonorova N, De Smet I, Cammue BPA. The Plant Peptidome: An Expanding Repertoire of Structural Features and Biological Functions. Plant Cell. 2015;27(8):2095-2118. doi: 10.1105/tpc.15.00440
  5. Stintzi A, Schaller A. Biogenesis of post-translationally modified peptide signals for plant reproductive development. Curr. Opin. Plant Biol. 2022;69:102274. doi: 10.1016/j.pbi.2022.102274
  6. Feng YZ, Zhu QF, Xue J, Chen P, Yu Y. Shining in the dark: the big world of small peptides in plants. aBIOTECH. 2023;4(3):238-256. doi: 10.1007/s42994-023-00100-0
  7. Gancheva MS, Malovichko YuV, Poliushkevich LO, Dodueva IE, Lutova LA. Plant Peptide Hormones. Russ J Plant Physiol. 2019;66(2):171-189. doi: 10.1134/S1021443719010072
  8. Okada T, Yoshizumi H, Terashima Y. A Lethal Toxic Substance for Brewing Yeast in Wheat and Barley: Part I. Assay of Toxicity on Various Grains, and Sensitivity of Various Yeast StrainsPart II. Isolation and Some Properties of Toxic Principle. Agricultural and Biological Chemistry. 1970;34(7):1084-1094. doi: 10.1080/00021369.1970.10859736
  9. van der Weerden NL, Bleackley MR, Anderson MA. Properties and mechanisms of action of naturally occurring antifungal peptides. Cell Mol Life Sci. 2013;70(19):3545-3570. doi: 10.1007/s00018-013-1260-1
  10. Hara K, Kajita R, Torii KU, Bergmann DC, Kakimoto T. The secretory peptide gene EPF1 enforces the stomatal one-cell-spacing rule. Genes Dev. 2007;21(14):1720-1725. doi: 10.1101/gad.1550707
  11. Sugano SS, Shimada T, Imai Y, Okawa K, Tamai A, Mori M, Hara-Nishimura I. Stomagen positively regulates stomatal density in Arabidopsis. Nature. 2010;463(7278):241-244. doi: 10.1038/nature08682
  12. Maróti G, Downie JA, Kondorosi É. Plant cysteine-rich peptides that inhibit pathogen growth and control rhizobial differentiation in legume nodules. Curr. Opin. Plant Biol. 2015;26:57-63. doi: 10.1016/j.pbi.2015.05.031
  13. Hunt L, Gray JE. The Signaling Peptide EPF2 Controls Asymmetric Cell Divisions during Stomatal Development. Curr. Biol. 2009;19(10):864-869. doi: 10.1016/j.cub.2009.03.069
  14. Richardson LGL, Torii KU. Take a deep breath: peptide signalling in stomatal patterning and differentiation. J. Exp. Bot. 2013;64(17):5243-5251. doi: 10.1093/jxb/ert246
  15. Lee JS, Kuroha T, Hnilova M, Khatayevich D, Kanaoka MM, McAbee JM, Sarikaya M, Tamerler C, Torii KU. Direct interaction of ligand–receptor pairs specifying stomatal patterning. Genes Dev. 2012;26(2):126-136. doi: 10.1101/gad.179895.111
  16. Silverstein KAT, Moskal Jr. WA, Wu HC, Underwood BA, Graham MA, Town CD, VandenBosch KA. Small cysteine-rich peptides resembling antimicrobial peptides have been under-predicted in plants. Plant J. 2007;51(2):262-280. doi: 10.1111/j.1365-313X.2007.03136.x
  17. Финкина ЕИ, Мельникова ДН, Богданов ИВ, Овчинникова ТВ. Пептиды системы врожденного иммунитета растений. Часть I. Структура, биологическая активность и механизмы действия. Биоорган. химия. 2019;45(1):3-16. doi: 10.1134/S013234231901007X
  18. Финкина ЕИ, Мельникова ДН, Богданов ИВ, Овчинникова (Марченко) ТВ. Пептиды системы врожденного иммунитета растений. Часть II. Биосинтез, биологические функции и возможное практическое применение. Биоорган. химия. 2019;45(2):115-126. doi: 10.1134/S0132342319020040
  19. Ohki S, Takeuchi M, Mori M. The NMR structure of stomagen reveals the basis of stomatal density regulation by plant peptide hormones. Nat Commun. 2011;2(1):512. doi: 10.1038/ncomms1520
  20. Kondo T, Kajita R, Miyazaki A, Hokoyama M, Nakamura-Miura T, Mizuno S, Masuda Y, Irie K, Tanaka Y, Takada S, et al. Stomatal Density is Controlled by a Mesophyll-Derived Signaling Molecule. Plant and Cell Physiology. 2010;51(1):1-8. doi: 10.1093/pcp/pcp180
  21. Lin G, Zhang L, Han Z, Yang X, Liu W, Li E, Chang J, Qi Y, Shpak ED, Chai J. A receptor-like protein acts as a specificity switch for the regulation of stomatal development. Genes Dev. 2017;31(9):927-938. doi: 10.1101/gad.297580.117
  22. Rowe MH, Bergmann DC. Complex signals for simple cells: the expanding ranks of signals and receptors guiding stomatal development. Current Opinion in Plant Biology. 2010;13(5):548-555. doi: 10.1016/j.pbi.2010.06.002
  23. Hara K, Yokoo T, Kajita R, Onishi T, Yahata S, Peterson KM, Torii KU, Kakimoto T. Epidermal cell density is autoregulated via a secretory peptide, EPIDERMAL PATTERNING FACTOR 2 in Arabidopsis leaves. Plant Cell Physiol. 2009;50(6):1019-1031. doi: 10.1093/pcp/pcp068
  24. Tabata R, Sawa S. Maturation processes and structures of small secreted peptides in plants. Front Plant Sci. 2014;5:311. doi: 10.3389/fpls.2014.00311
  25. Olsson V, Joos L, Zhu S, Gevaert K, Butenko MA, Smet ID. Look Closely, the Beautiful May Be Small: Precursor-Derived Peptides in Plants. Annual Review of Plant Biology. 2019;70(1):153-186. doi: 10.1146/annurev-arplant-042817-040413
  26. Abramson J, Adler J, Dunger J, Evans R, Green T, Pritzel A, Ronneberger O, Willmore L, Ballard AJ, Bambrick J, et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature. 2024;630(8016):493-500. doi: 10.1038/s41586-024-07487-w
  27. Wang H, Ngwenyama N, Liu Y, Walker JC, Zhang S. Stomatal Development and Patterning Are Regulated by Environmentally Responsive Mitogen-Activated Protein Kinases in Arabidopsis. The Plant Cell. 2007;19(1):63-73. doi: 10.1105/tpc.106.048298
  28. Takata N, Yokota K, Ohki S, Mori M, Taniguchi T, Kurita M. Evolutionary relationship and structural characterization of the EPF/EPFL gene family. PLoS One. 2013;8(6):e65183. doi: 10.1371/journal.pone.0065183
  29. Bowman JL, Kohchi T, Yamato KT, Jenkins J, Shu S, Ishizaki K, Yamaoka S, Nishihama R, Nakamura Y, Berger F, et al. Insights into Land Plant Evolution Garnered from the Marchantia polymorpha Genome. Cell. 2017;171(2):287-304.e15. doi: 10.1016/j.cell.2017.09.030
  30. Rychel AL, Peterson KM, Torii KU. Plant twitter: ligands under 140 amino acids enforcing stomatal patterning. J Plant Res. 2010;123(3):275-280. doi: 10.1007/s10265-010-0330-9
  31. Caine RS, Chater CC, Kamisugi Y, Cuming AC, Beerling DJ, Gray JE, Fleming AJ. An ancestral stomatal patterning module revealed in the non-vascular land plant Physcomitrella patens. Development. 2016;143(18):3306-3314. doi: 10.1242/dev.135038
  32. Caine RS, Chater CCC, Fleming AJ, Gray JE. Stomata and Sporophytes of the Model Moss Physcomitrium patens. Front Plant Sci. 2020;11:643. doi: 10.3389/fpls.2020.00643
  33. Jia M, Wang Y, Jin H, Li J, Song T, Chen Y, Yuan Y, Hu H, Li R, Wu Z, et al. Comparative Genomics Analysis of the Populus Epidermal Pattern Factor (EPF) Family Revealed Their Regulatory Effects in Populus euphratica Stomatal Development. Int J Mol Sci. 2024;25(18):10052. doi: 10.3390/ijms251810052
  34. Li P, Zhao Z, Wang W, Wang T, Hu N, Wei Y, Sun Z, Chen Y, Li Y, Liu Q, et al. Genome-wide analyses of member identification, expression pattern, and protein–protein interaction of EPF/EPFL gene family in Gossypium. BMC Plant Biology. 2024;24(1):554. doi: 10.1186/s12870-024-05262-7
  35. McElwain JC, Chaloner WG. Stomatal Density and Index of Fossil Plants Track Atmospheric Carbon Dioxide in the Palaeozoic. Annals of Botany. 1995;76(4):389-395. doi: 10.1006/anbo.1995.1112
  36. Qiao R, Yang J, Deng Y, Duan X, Li X, Zhu F, Liu M, Mou J, Zhang N, Si H. Genome-Wide Identification of Epidermal Pattern Factor (EPF) Gene Family in Potato and Functional Characterization of StEPF4 in Regulating Drought Stress. Agronomy. 2024;14(12):2948. doi: 10.3390/agronomy14122948
  37. Wang S, Wang W, Chen J, Wan H, Zhao H, Liu X, Dai X, Zeng C, Xu D. Comprehensive Identification and Expression Profiling of Epidermal Pattern Factor (EPF) Gene Family in Oilseed Rape (Brassica napus L.) under Salt Stress. Genes. 2024;15(7):912. doi: 10.3390/genes15070912
  38. Liu S, Chen T, Li X, Cui J, Tian Y. Genome-wide identification and expression analysis of EPF/EPFL gene family in Populus trichocarpa. Front Genet. 2024;15:1432376. doi: 10.3389/fgene.2024.1432376
  39. Xiong L, Huang Y, Liu Z, Li C, Yu H, Shahid MQ, Lin Y, Qiao X, Xiao J, Gray JE, et al. Small EPIDERMAL PATTERNING FACTOR-LIKE2 peptides regulate awn development in rice. Plant Physiology. 2022;190(1):516-531. doi: 10.1093/plphys/kiac278
  40. Zhiling L, Wenhua D, Fangyuan Z. Genome-wide identification and phylogenetic and expression pattern analyses of EPF/EPFL family genes in the Rye (Secale cereale L.). BMC Genomics. 2024;25(1):532. doi: 10.1186/s12864-024-10425-9
  41. Jiao Z, Wang J, Shi Y, Wang Z, Zhang J, Du Q, Liu B, Jia X, Niu J, Gu C, et al. Genome-Wide Identification and Analysis of the EPF Gene Family in Sorghum bicolor (L.) Moench. Plants. 2023;12(22):3912. doi: 10.3390/plants12223912
  42. Liu R, Xu K, Li Y, Zhao W, Ji H, Lei X, Ma T, Ye J, Zhang J, Du H, et al. Investigation on the Potential Functions of ZmEPF/EPFL Family Members in Response to Abiotic Stress in Maize. Int. J. Mol. Sci. 2024;25(13):7196. doi: 10.3390/ijms25137196
  43. Wei D, Chang P, Liu JY, Yang Y, Zhang X, Chen L, Hu YA. Genome-wide identification of EPF/EPFL gene family in wheat (Triticum aestivum) and analysis of TaEPF1-2B associated with stomatal traits. J. Triticeae Crops. 2021;41(11):1317-1329. doi: 10.7606/j.issn.1009-1041.2021.11.01
  44. Lee JS, Hnilova M, Maes M, Lin YCL, Putarjunan A, Han SK, Avila J, Torii KU. Competitive binding of antagonistic peptides fine-tunes stomatal patterning. Nature. 2015;522(7557):439-443. doi: 10.1038/nature14561
  45. Hunt L, Bailey KJ, Gray JE. The signalling peptide EPFL9 is a positive regulator of stomatal development. New Phytol. 2010;186(3):609-614. doi: 10.1111/j.1469-8137.2010.03200.x
  46. Kawamoto N, Carpio DPD, Hofmann A, Mizuta Y, Kurihara D, Higashiyama T, Uchida N, Torii KU, Colombo L, Groth G, et al. A Peptide Pair Coordinates Regular Ovule Initiation Patterns with Seed Number and Fruit Size. Current Biology. 2020;30(22):4352-4361.e4. doi: 10.1016/j.cub.2020.08.050
  47. Tameshige T, Ikematsu S, Torii KU, Uchida N. Stem development through vascular tissues: EPFL–ERECTA family signaling that bounces in and out of phloem. J. Exp. Bot. 2017;68(1):45-53. doi: 10.1093/jxb/erw447
  48. Kosentka PZ, Overholt A, Maradiaga R, Mitoubsi O, Shpak ED. EPFL Signals in the Boundary Region of the SAM Restrict Its Size and Promote Leaf Initiation. Plant Physiology. 2019;179(1):265-279. doi: 10.1104/pp.18.00714
  49. Fujihara R, Uchida N, Tameshige T, Kawamoto N, Hotokezaka Y, Higaki T, Simon R, Torii KU, Tasaka M, Aida M. The boundary-expressed EPIDERMAL PATTERNING FACTOR-LIKE2 gene encoding a signaling peptide promotes cotyledon growth during Arabidopsis thaliana embryogenesis. Plant Biotechnol (Tokyo). 2021;38(3):317-322. doi: 10.5511/plantbiotechnology.21.0508a
  50. Kimura Y, Tasaka M, Torii KU, Uchida N. ERECTA-family genes coordinate stem cell functions between the epidermal and internal layers of the shoot apical meristem. Development. 2018;145(1):dev156380. doi: 10.1242/dev.156380
  51. Zhang L, DeGennaro D, Lin G, Chai J, Shpak ED. ERECTA family signaling constrains CLAVATA3 and WUSCHEL to the center of the shoot apical meristem. Development. 2021;148(5):dev189753. doi: 10.1242/dev.189753
  52. Huang Y, Chai M, Xi X, Zhu W, Qi J, Qin Y, Cai H. Functional analysis of EPF/EPFL genes in Arabidopsis resistance to Sclerotinia sclerotiorum. Journal of Fujian Agriculture and Forestry University (Natural Science Edition). 2022;51(4):486-492. https://jfafu.fafu.edu.cn/#/digest?ArticleID=1333
  53. Uchida N, Lee JS, Horst RJ, Lai HH, Kajita R, Kakimoto T, Tasaka M, Torii KU. Regulation of inflorescence architecture by intertissue layer ligand–receptor communication between endodermis and phloem. Proceedings of the National Academy of Sciences. 2012;109(16):6337-6342. doi: 10.1073/pnas.1117537109
  54. Cai H, Huang Y, Liu L, Zhang M, Chai M, Xi X, Aslam M, Wang L, Ma S, Su H, et al. Signaling by the EPFL-ERECTA family coordinates female germline specification through the BZR1 family in Arabidopsis. The Plant Cell. 2023;35(5):1455-1473. doi: 10.1093/plcell/koad032
  55. Li M, Lv M, Wang X, Cai Z, Yao H, Zhang D, Li H, Zhu M, Du W, Wang R, et al. The EPFL–ERf–SERK signaling controls integument development in Arabidopsis. New Phytologist. 2023;238(1):186-201. doi: 10.1111/nph.18701
  56. Negoro S, Hirabayashi T, Iwasaki R, Torii KU, Uchida N. EPFL peptide signalling ensures robust self-pollination success under cool temperature stress by aligning the length of the stamen and pistil. Plant, Cell & Environment. 2023;46(2):451-463. doi: 10.1111/pce.14498
  57. He Y, He X, Wang X, Hao M, Gao J, Wang Y, Yang ZN, Meng X. An EPFL peptide signaling pathway promotes stamen elongation via enhancing filament cell proliferation to ensure successful self-pollination in Arabidopsis thaliana. New Phytologist. 2023;238(3):1045-1058. doi: 10.1111/nph.18806
  58. Jangra R, Brunetti SC, Wang X, Kaushik P, Gulick PJ, Foroud NA, Wang S, Lee JS. Duplicated antagonistic EPF peptides optimize grass stomatal initiation. Development. 2021;148(16):dev199780. doi: 10.1242/dev.199780
  59. Caine RS, Chater CC, Kamisugi Y, Cuming AC, Beerling DJ, Gray JE, Fleming AJ. An ancestral stomatal patterning module revealed in the non-vascular land plant Physcomitrella patens. Development. 2016;143(18):3306-3314. doi: 10.1242/dev.135038
  60. Uzair M, Urquidi Camacho RA, Liu Z, Overholt AM, DeGennaro D, Zhang L, Herron BS, Hong T, Shpak ED. An updated model of shoot apical meristem regulation by ERECTA family and CLAVATA3 signaling pathways in Arabidopsis. Development. 2024;151(12):dev202870. doi: 10.1242/dev.202870
  61. Ikematsu S, Tasaka M, Torii KU, Uchida N. ERECTA-family receptor kinase genes redundantly prevent premature progression of secondary growth in the Arabidopsis hypocotyl. New Phytol. 2017;213(4):1697-1709. doi: 10.1111/nph.14335
  62. Uchida N, Tasaka M. Regulation of plant vascular stem cells by endodermis-derived EPFL-family peptide hormones and phloem-expressed ERECTA-family receptor kinases. J. Exp. Bot. 2013;64(17):5335-5343. doi: 10.1093/jxb/ert196
  63. Yuan B, Wang H. Peptide Signaling Pathways Regulate Plant Vascular Development. Front Plant Sci. 2021;12:719606. doi: 10.3389/fpls.2021.719606
  64. Hu Y, Xie Q, Chua NH. The Arabidopsis Auxin-Inducible Gene ARGOS Controls Lateral Organ Size. The Plant Cell. 2003;15(9):1951-1961. doi: 10.1105/tpc.013557
  65. Guo T, Lu ZQ, Xiong Y, Shan JX, Ye WW, Dong NQ, Kan Y, Yang YB, Zhao HY, Yu HX, et al. Optimization of rice panicle architecture by specifically suppressing ligand–receptor pairs. Nat Commun. 2023;14(1):1640. doi: 10.1038/s41467-023-37326-x
  66. Guo T, Lu ZQ, Shan JX, Ye WW, Dong NQ, Lin HX. ERECTA1 Acts Upstream of the OsMKKK10-OsMKK4-OsMPK6 Cascade to Control Spikelet Number by Regulating Cytokinin Metabolism in Rice. Plant Cell. 2020;32(9):2763-2779. doi: 10.1105/tpc.20.00351
  67. Sun Q, Qu J, Yu Y, Yang Z, Wei S, Wu Y, Yang J, Peng Z. TaEPFL1, an EPIDERMAL PATTERNING FACTOR-LIKE (EPFL) secreted peptide gene, is required for stamen development in wheat. Genetica. 2019;147(2):121-130. doi: 10.1007/s10709-019-00061-7
  68. Huang Y, Tao Z, Liu Q, Wang X, Yu J, Liu G, Wang H. BnEPFL6, an EPIDERMAL PATTERNING FACTOR-LIKE (EPFL) secreted peptide gene, is required for filament elongation in Brassica napus. Plant Mol Biol. 2014;85(4):505-517. doi: 10.1007/s11103-014-0200-2
  69. Jin J, Hua L, Zhu Z, Tan L, Zhao X, Zhang W, Liu F, Fu Y, Cai H, Sun X, et al. GAD1 Encodes a Secreted Peptide That Regulates Grain Number, Grain Length, and Awn Development in Rice Domestication. The Plant Cell. 2016;28(10):2453-2463. doi: 10.1105/tpc.16.00379
  70. Xia H, Wang Q, Chen Z, Sun X, Zhao F, Zhang D, Fei J, Zhao R, Yin Y. Identification and Functional Analysis of the EPF/EPFL Gene Family in Maize (Zea mays L.): Implications for Drought Stress Response. Agronomy. 2024;14(8):1734. doi: 10.3390/agronomy14081734
  71. Jiang Q, Yang J, Wang Q, Zhou K, Mao K, Ma F. Overexpression of MdEPF2 improves water use efficiency and reduces oxidative stress in tomato. Environmental and Experimental Botany. 2019;162:321-332. doi: 10.1016/j.envexpbot.2019.03.009
  72. Liu S, Wang C, Jia F, An Y, Liu C, Xia X, Yin W. Secretory peptide PdEPF2 enhances drought tolerance by modulating stomatal density and regulates ABA response in transgenic Arabidopsis thaliana. Plant Cell Tiss Organ Cult. 2016;125(3):419-431. doi: 10.1007/s11240-016-0957-x
  73. Lyapina I, Ganaeva D, Rogozhin EA, Ryabukhina EV, Ryazantsev DYu, Lazarev V, Alieva SE, Mamaeva A, Fesenko I. Comparative analysis of small secreted peptide signaling during defense response: insights from vascular and non-vascular plants. Physiologia Plantarum. 2025;177(2):e70147. doi: 10.1111/ppl.70147
  74. Slezina MP, Istomina EA, Korostyleva TV, Kovtun AS, Kasianov AS, Konopkin AA, Shcherbakova LA, Odintsova TI. Molecular Insights into the Role of Cysteine-Rich Peptides in Induced Resistance to Fusarium oxysporum Infection in Tomato Based on Transcriptome Profiling. Int. J. Mol. Sci. 2021;22(11):5741. doi: 10.3390/ijms22115741
  75. Jordá L, Sopeña-Torres S, Escudero V, Nuñez-Corcuera B, Delgado-Cerezo M, Torii KU, Molina A. ERECTA and BAK1 Receptor Like Kinases Interact to Regulate Immune Responses in Arabidopsis. Front Plant Sci. 2016;7:897. doi: 10.3389/fpls.2016.00897
  76. Tateda C, Obara K, Abe Y, Sekine R, Nekoduka S, Hikage T, Nishihara M, Sekine KT, Fujisaki K. The Host Stomatal Density Determines Resistance to Septoria gentianae in Japanese Gentian. MPMI. 2019;32(4):428-436. doi: 10.1094/MPMI-05-18-0114-R
  77. Godiard L, Sauviac L, Torii KU, Grenon O, Mangin B, Grimsley NH, Marco Y. ERECTA, an LRR receptor-like kinase protein controlling development pleiotropically affects resistance to bacterial wilt. Plant J. 2003;36(3):353-365. doi: 10.1046/j.1365-313X.2003.01877.x
  78. Adie BAT, Pérez-Pérez J, Pérez-Pérez MM, Godoy M, Sánchez-Serrano JJ, Schmelz EA, Solano R. ABA Is an Essential Signal for Plant Resistance to Pathogens Affecting JA Biosynthesis and the Activation of Defenses in Arabidopsis. The Plant Cell. 2007;19(5):1665-1681. doi: 10.1105/tpc.106.048041
  79. Häffner E, Karlovsky P, Splivallo R, Traczewska A, Diederichsen E. ERECTA, salicylic acid, abscisic acid, and jasmonic acid modulate quantitative disease resistance of Arabidopsis thaliana to Verticillium longisporum. BMC Plant Biol. 2014;14(1):85. doi: 10.1186/1471-2229-14-85
  80. Cai H, Huang Y, Chen F, Liu L, Chai M, Zhang M, Yan M, Aslam M, He Q, Qin Y. ERECTA signaling regulates plant immune responses via chromatin-mediated promotion of WRKY33 binding to target genes. New Phytol. 2021;230(2):737-756. doi: 10.1111/nph.17200
  81. Llorente F, Alonso-Blanco C, Sánchez-Rodriguez C, Jorda L, Molina A. ERECTA receptor-like kinase and heterotrimeric G protein from Arabidopsis are required for resistance to the necrotrophic fungus Plectosphaerella cucumerina. Plant J. 2005;43(2):165-180. doi: 10.1111/j.1365-313X.2005.02440.x
  82. Sánchez-Rodríguez C, Estévez JM, Llorente F, Hernández-Blanco C, Jordá L, Pagán I, Berrocal M, Marco Y, Somerville S, Molina A. The ERECTA Receptor-Like Kinase Regulates Cell Wall–Mediated Resistance to Pathogens in Arabidopsis thaliana. MPMI. 2009;22(8):953-963. doi: 10.1094/MPMI-22-8-0953
  83. Sopeña-Torres S, Jordá L, Sánchez-Rodríguez C, Miedes E, Escudero V, Swami S, López G, Piślewska-Bednarek M, Lassowskat I, Lee J, et al. YODA MAP3K kinase regulates plant immune responses conferring broad-spectrum disease resistance. New Phytol. 2018;218(2):661-680. doi: 10.1111/nph.15007

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Майборода А.Д., Макеева А.А., Азаркина Р.А., Барашкова А.С., Мамаева А.С., 2025

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».