Пептиды EPFL в регуляции развития и стрессовых ответов у растений
- Авторы: Майборода А.Д.1, Макеева А.А.1, Азаркина Р.А.1, Барашкова А.С.1,2, Мамаева А.С.1
-
Учреждения:
- Федеральное государственное бюджетное учреждение науки Государственный научный центр Российской Федерации Институт биоорганической химии им. академиков М.М. Шемякина и Ю.А. Овчинникова Российской академии наук
- Федеральное государственное бюджетное научное учреждение «Всероссийский научно-исследовательский институт защиты растений»
- Выпуск: Том 17, № 4 (2025)
- Страницы: 52-63
- Раздел: Обзоры
- URL: https://journals.rcsi.science/2075-8251/article/view/365059
- DOI: https://doi.org/10.32607/actanaturae.27675
- ID: 365059
Цитировать
Аннотация
Цистеин-богатые пептиды семейства EPF/EPFL (epidermal patterning factor/epidermal patterning factor-like) распространены у растений, начиная со мхов и заканчивая покрытосеменными. EPF/EPFL играют важную роль в морфогенезе – регулируют расположение устьиц, развитие соцветий, функционирование апикальной и латеральной побеговых меристем, закладку проводящих тканей, формирование края листа, а также развитие цветков и плодов. Недавние исследования показали, что EPFL могут быть вовлечены в адаптацию растений к биотическим и абиотическим стрессам. В обзоре рассмотрены структура, механизмы передачи сигнала, филогенетическое распространение и функции пептидов семейства EPF/EPFL.
Ключевые слова
Об авторах
Александра Денисовна Майборода
Федеральное государственное бюджетное учреждение науки Государственный научный центр Российской Федерации Институт биоорганической химии им. академиков М.М. Шемякина и Ю.А. Овчинникова Российской академии наук
Email: alesandamay@yandex.ru
Россия, Москва, 117997
Арина Андреевна Макеева
Федеральное государственное бюджетное учреждение науки Государственный научный центр Российской Федерации Институт биоорганической химии им. академиков М.М. Шемякина и Ю.А. Овчинникова Российской академии наук
Email: aryamakeeva@gmail.com
Россия, Москва, 117997
Регина Айдаровна Азаркина
Федеральное государственное бюджетное учреждение науки Государственный научный центр Российской Федерации Институт биоорганической химии им. академиков М.М. Шемякина и Ю.А. Овчинникова Российской академии наук
Email: Khazigaleeva.regina@gmail.com
Россия, Москва, 117997
Анна Сергеевна Барашкова
Федеральное государственное бюджетное учреждение науки Государственный научный центр Российской Федерации Институт биоорганической химии им. академиков М.М. Шемякина и Ю.А. Овчинникова Российской академии наук; Федеральное государственное бюджетное научное учреждение «Всероссийский научно-исследовательский институт защиты растений»
Email: barashkova.an@gmail.com
Россия, Москва, 117997; Санкт-Петербург, Пушкин, 196608
Анна Станиславовна Мамаева
Федеральное государственное бюджетное учреждение науки Государственный научный центр Российской Федерации Институт биоорганической химии им. академиков М.М. Шемякина и Ю.А. Овчинникова Российской академии наук
Автор, ответственный за переписку.
Email: AnnetteSt@yandex.ru
Россия, Москва, 117997
Список литературы
- Fukuda H, Hardtke CS. Peptide Signaling Pathways in Vascular Differentiation. Plant Physiol. 2020;182(4):1636-1644. doi: 10.1104/pp.19.01259
- Mamaeva A, Makeeva A, Ganaeva D. The Small Key to the Treasure Chest: Endogenous Plant Peptides Involved in Symbiotic Interactions. Plants. 2025;14(3):378. doi: 10.3390/plants14030378
- Pearce G, Strydom D, Johnson S, Ryan CA. A Polypeptide from Tomato Leaves Induces Wound-Inducible Proteinase Inhibitor Proteins. Science. 1991;253(5022):895-897. doi: 10.1126/science.253.5022.895
- Tavormina P, De Coninck B, Nikonorova N, De Smet I, Cammue BPA. The Plant Peptidome: An Expanding Repertoire of Structural Features and Biological Functions. Plant Cell. 2015;27(8):2095-2118. doi: 10.1105/tpc.15.00440
- Stintzi A, Schaller A. Biogenesis of post-translationally modified peptide signals for plant reproductive development. Curr. Opin. Plant Biol. 2022;69:102274. doi: 10.1016/j.pbi.2022.102274
- Feng YZ, Zhu QF, Xue J, Chen P, Yu Y. Shining in the dark: the big world of small peptides in plants. aBIOTECH. 2023;4(3):238-256. doi: 10.1007/s42994-023-00100-0
- Gancheva MS, Malovichko YuV, Poliushkevich LO, Dodueva IE, Lutova LA. Plant Peptide Hormones. Russ J Plant Physiol. 2019;66(2):171-189. doi: 10.1134/S1021443719010072
- Okada T, Yoshizumi H, Terashima Y. A Lethal Toxic Substance for Brewing Yeast in Wheat and Barley: Part I. Assay of Toxicity on Various Grains, and Sensitivity of Various Yeast StrainsPart II. Isolation and Some Properties of Toxic Principle. Agricultural and Biological Chemistry. 1970;34(7):1084-1094. doi: 10.1080/00021369.1970.10859736
- van der Weerden NL, Bleackley MR, Anderson MA. Properties and mechanisms of action of naturally occurring antifungal peptides. Cell Mol Life Sci. 2013;70(19):3545-3570. doi: 10.1007/s00018-013-1260-1
- Hara K, Kajita R, Torii KU, Bergmann DC, Kakimoto T. The secretory peptide gene EPF1 enforces the stomatal one-cell-spacing rule. Genes Dev. 2007;21(14):1720-1725. doi: 10.1101/gad.1550707
- Sugano SS, Shimada T, Imai Y, Okawa K, Tamai A, Mori M, Hara-Nishimura I. Stomagen positively regulates stomatal density in Arabidopsis. Nature. 2010;463(7278):241-244. doi: 10.1038/nature08682
- Maróti G, Downie JA, Kondorosi É. Plant cysteine-rich peptides that inhibit pathogen growth and control rhizobial differentiation in legume nodules. Curr. Opin. Plant Biol. 2015;26:57-63. doi: 10.1016/j.pbi.2015.05.031
- Hunt L, Gray JE. The Signaling Peptide EPF2 Controls Asymmetric Cell Divisions during Stomatal Development. Curr. Biol. 2009;19(10):864-869. doi: 10.1016/j.cub.2009.03.069
- Richardson LGL, Torii KU. Take a deep breath: peptide signalling in stomatal patterning and differentiation. J. Exp. Bot. 2013;64(17):5243-5251. doi: 10.1093/jxb/ert246
- Lee JS, Kuroha T, Hnilova M, Khatayevich D, Kanaoka MM, McAbee JM, Sarikaya M, Tamerler C, Torii KU. Direct interaction of ligand–receptor pairs specifying stomatal patterning. Genes Dev. 2012;26(2):126-136. doi: 10.1101/gad.179895.111
- Silverstein KAT, Moskal Jr. WA, Wu HC, Underwood BA, Graham MA, Town CD, VandenBosch KA. Small cysteine-rich peptides resembling antimicrobial peptides have been under-predicted in plants. Plant J. 2007;51(2):262-280. doi: 10.1111/j.1365-313X.2007.03136.x
- Финкина ЕИ, Мельникова ДН, Богданов ИВ, Овчинникова ТВ. Пептиды системы врожденного иммунитета растений. Часть I. Структура, биологическая активность и механизмы действия. Биоорган. химия. 2019;45(1):3-16. doi: 10.1134/S013234231901007X
- Финкина ЕИ, Мельникова ДН, Богданов ИВ, Овчинникова (Марченко) ТВ. Пептиды системы врожденного иммунитета растений. Часть II. Биосинтез, биологические функции и возможное практическое применение. Биоорган. химия. 2019;45(2):115-126. doi: 10.1134/S0132342319020040
- Ohki S, Takeuchi M, Mori M. The NMR structure of stomagen reveals the basis of stomatal density regulation by plant peptide hormones. Nat Commun. 2011;2(1):512. doi: 10.1038/ncomms1520
- Kondo T, Kajita R, Miyazaki A, Hokoyama M, Nakamura-Miura T, Mizuno S, Masuda Y, Irie K, Tanaka Y, Takada S, et al. Stomatal Density is Controlled by a Mesophyll-Derived Signaling Molecule. Plant and Cell Physiology. 2010;51(1):1-8. doi: 10.1093/pcp/pcp180
- Lin G, Zhang L, Han Z, Yang X, Liu W, Li E, Chang J, Qi Y, Shpak ED, Chai J. A receptor-like protein acts as a specificity switch for the regulation of stomatal development. Genes Dev. 2017;31(9):927-938. doi: 10.1101/gad.297580.117
- Rowe MH, Bergmann DC. Complex signals for simple cells: the expanding ranks of signals and receptors guiding stomatal development. Current Opinion in Plant Biology. 2010;13(5):548-555. doi: 10.1016/j.pbi.2010.06.002
- Hara K, Yokoo T, Kajita R, Onishi T, Yahata S, Peterson KM, Torii KU, Kakimoto T. Epidermal cell density is autoregulated via a secretory peptide, EPIDERMAL PATTERNING FACTOR 2 in Arabidopsis leaves. Plant Cell Physiol. 2009;50(6):1019-1031. doi: 10.1093/pcp/pcp068
- Tabata R, Sawa S. Maturation processes and structures of small secreted peptides in plants. Front Plant Sci. 2014;5:311. doi: 10.3389/fpls.2014.00311
- Olsson V, Joos L, Zhu S, Gevaert K, Butenko MA, Smet ID. Look Closely, the Beautiful May Be Small: Precursor-Derived Peptides in Plants. Annual Review of Plant Biology. 2019;70(1):153-186. doi: 10.1146/annurev-arplant-042817-040413
- Abramson J, Adler J, Dunger J, Evans R, Green T, Pritzel A, Ronneberger O, Willmore L, Ballard AJ, Bambrick J, et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature. 2024;630(8016):493-500. doi: 10.1038/s41586-024-07487-w
- Wang H, Ngwenyama N, Liu Y, Walker JC, Zhang S. Stomatal Development and Patterning Are Regulated by Environmentally Responsive Mitogen-Activated Protein Kinases in Arabidopsis. The Plant Cell. 2007;19(1):63-73. doi: 10.1105/tpc.106.048298
- Takata N, Yokota K, Ohki S, Mori M, Taniguchi T, Kurita M. Evolutionary relationship and structural characterization of the EPF/EPFL gene family. PLoS One. 2013;8(6):e65183. doi: 10.1371/journal.pone.0065183
- Bowman JL, Kohchi T, Yamato KT, Jenkins J, Shu S, Ishizaki K, Yamaoka S, Nishihama R, Nakamura Y, Berger F, et al. Insights into Land Plant Evolution Garnered from the Marchantia polymorpha Genome. Cell. 2017;171(2):287-304.e15. doi: 10.1016/j.cell.2017.09.030
- Rychel AL, Peterson KM, Torii KU. Plant twitter: ligands under 140 amino acids enforcing stomatal patterning. J Plant Res. 2010;123(3):275-280. doi: 10.1007/s10265-010-0330-9
- Caine RS, Chater CC, Kamisugi Y, Cuming AC, Beerling DJ, Gray JE, Fleming AJ. An ancestral stomatal patterning module revealed in the non-vascular land plant Physcomitrella patens. Development. 2016;143(18):3306-3314. doi: 10.1242/dev.135038
- Caine RS, Chater CCC, Fleming AJ, Gray JE. Stomata and Sporophytes of the Model Moss Physcomitrium patens. Front Plant Sci. 2020;11:643. doi: 10.3389/fpls.2020.00643
- Jia M, Wang Y, Jin H, Li J, Song T, Chen Y, Yuan Y, Hu H, Li R, Wu Z, et al. Comparative Genomics Analysis of the Populus Epidermal Pattern Factor (EPF) Family Revealed Their Regulatory Effects in Populus euphratica Stomatal Development. Int J Mol Sci. 2024;25(18):10052. doi: 10.3390/ijms251810052
- Li P, Zhao Z, Wang W, Wang T, Hu N, Wei Y, Sun Z, Chen Y, Li Y, Liu Q, et al. Genome-wide analyses of member identification, expression pattern, and protein–protein interaction of EPF/EPFL gene family in Gossypium. BMC Plant Biology. 2024;24(1):554. doi: 10.1186/s12870-024-05262-7
- McElwain JC, Chaloner WG. Stomatal Density and Index of Fossil Plants Track Atmospheric Carbon Dioxide in the Palaeozoic. Annals of Botany. 1995;76(4):389-395. doi: 10.1006/anbo.1995.1112
- Qiao R, Yang J, Deng Y, Duan X, Li X, Zhu F, Liu M, Mou J, Zhang N, Si H. Genome-Wide Identification of Epidermal Pattern Factor (EPF) Gene Family in Potato and Functional Characterization of StEPF4 in Regulating Drought Stress. Agronomy. 2024;14(12):2948. doi: 10.3390/agronomy14122948
- Wang S, Wang W, Chen J, Wan H, Zhao H, Liu X, Dai X, Zeng C, Xu D. Comprehensive Identification and Expression Profiling of Epidermal Pattern Factor (EPF) Gene Family in Oilseed Rape (Brassica napus L.) under Salt Stress. Genes. 2024;15(7):912. doi: 10.3390/genes15070912
- Liu S, Chen T, Li X, Cui J, Tian Y. Genome-wide identification and expression analysis of EPF/EPFL gene family in Populus trichocarpa. Front Genet. 2024;15:1432376. doi: 10.3389/fgene.2024.1432376
- Xiong L, Huang Y, Liu Z, Li C, Yu H, Shahid MQ, Lin Y, Qiao X, Xiao J, Gray JE, et al. Small EPIDERMAL PATTERNING FACTOR-LIKE2 peptides regulate awn development in rice. Plant Physiology. 2022;190(1):516-531. doi: 10.1093/plphys/kiac278
- Zhiling L, Wenhua D, Fangyuan Z. Genome-wide identification and phylogenetic and expression pattern analyses of EPF/EPFL family genes in the Rye (Secale cereale L.). BMC Genomics. 2024;25(1):532. doi: 10.1186/s12864-024-10425-9
- Jiao Z, Wang J, Shi Y, Wang Z, Zhang J, Du Q, Liu B, Jia X, Niu J, Gu C, et al. Genome-Wide Identification and Analysis of the EPF Gene Family in Sorghum bicolor (L.) Moench. Plants. 2023;12(22):3912. doi: 10.3390/plants12223912
- Liu R, Xu K, Li Y, Zhao W, Ji H, Lei X, Ma T, Ye J, Zhang J, Du H, et al. Investigation on the Potential Functions of ZmEPF/EPFL Family Members in Response to Abiotic Stress in Maize. Int. J. Mol. Sci. 2024;25(13):7196. doi: 10.3390/ijms25137196
- Wei D, Chang P, Liu JY, Yang Y, Zhang X, Chen L, Hu YA. Genome-wide identification of EPF/EPFL gene family in wheat (Triticum aestivum) and analysis of TaEPF1-2B associated with stomatal traits. J. Triticeae Crops. 2021;41(11):1317-1329. doi: 10.7606/j.issn.1009-1041.2021.11.01
- Lee JS, Hnilova M, Maes M, Lin YCL, Putarjunan A, Han SK, Avila J, Torii KU. Competitive binding of antagonistic peptides fine-tunes stomatal patterning. Nature. 2015;522(7557):439-443. doi: 10.1038/nature14561
- Hunt L, Bailey KJ, Gray JE. The signalling peptide EPFL9 is a positive regulator of stomatal development. New Phytol. 2010;186(3):609-614. doi: 10.1111/j.1469-8137.2010.03200.x
- Kawamoto N, Carpio DPD, Hofmann A, Mizuta Y, Kurihara D, Higashiyama T, Uchida N, Torii KU, Colombo L, Groth G, et al. A Peptide Pair Coordinates Regular Ovule Initiation Patterns with Seed Number and Fruit Size. Current Biology. 2020;30(22):4352-4361.e4. doi: 10.1016/j.cub.2020.08.050
- Tameshige T, Ikematsu S, Torii KU, Uchida N. Stem development through vascular tissues: EPFL–ERECTA family signaling that bounces in and out of phloem. J. Exp. Bot. 2017;68(1):45-53. doi: 10.1093/jxb/erw447
- Kosentka PZ, Overholt A, Maradiaga R, Mitoubsi O, Shpak ED. EPFL Signals in the Boundary Region of the SAM Restrict Its Size and Promote Leaf Initiation. Plant Physiology. 2019;179(1):265-279. doi: 10.1104/pp.18.00714
- Fujihara R, Uchida N, Tameshige T, Kawamoto N, Hotokezaka Y, Higaki T, Simon R, Torii KU, Tasaka M, Aida M. The boundary-expressed EPIDERMAL PATTERNING FACTOR-LIKE2 gene encoding a signaling peptide promotes cotyledon growth during Arabidopsis thaliana embryogenesis. Plant Biotechnol (Tokyo). 2021;38(3):317-322. doi: 10.5511/plantbiotechnology.21.0508a
- Kimura Y, Tasaka M, Torii KU, Uchida N. ERECTA-family genes coordinate stem cell functions between the epidermal and internal layers of the shoot apical meristem. Development. 2018;145(1):dev156380. doi: 10.1242/dev.156380
- Zhang L, DeGennaro D, Lin G, Chai J, Shpak ED. ERECTA family signaling constrains CLAVATA3 and WUSCHEL to the center of the shoot apical meristem. Development. 2021;148(5):dev189753. doi: 10.1242/dev.189753
- Huang Y, Chai M, Xi X, Zhu W, Qi J, Qin Y, Cai H. Functional analysis of EPF/EPFL genes in Arabidopsis resistance to Sclerotinia sclerotiorum. Journal of Fujian Agriculture and Forestry University (Natural Science Edition). 2022;51(4):486-492. https://jfafu.fafu.edu.cn/#/digest?ArticleID=1333
- Uchida N, Lee JS, Horst RJ, Lai HH, Kajita R, Kakimoto T, Tasaka M, Torii KU. Regulation of inflorescence architecture by intertissue layer ligand–receptor communication between endodermis and phloem. Proceedings of the National Academy of Sciences. 2012;109(16):6337-6342. doi: 10.1073/pnas.1117537109
- Cai H, Huang Y, Liu L, Zhang M, Chai M, Xi X, Aslam M, Wang L, Ma S, Su H, et al. Signaling by the EPFL-ERECTA family coordinates female germline specification through the BZR1 family in Arabidopsis. The Plant Cell. 2023;35(5):1455-1473. doi: 10.1093/plcell/koad032
- Li M, Lv M, Wang X, Cai Z, Yao H, Zhang D, Li H, Zhu M, Du W, Wang R, et al. The EPFL–ERf–SERK signaling controls integument development in Arabidopsis. New Phytologist. 2023;238(1):186-201. doi: 10.1111/nph.18701
- Negoro S, Hirabayashi T, Iwasaki R, Torii KU, Uchida N. EPFL peptide signalling ensures robust self-pollination success under cool temperature stress by aligning the length of the stamen and pistil. Plant, Cell & Environment. 2023;46(2):451-463. doi: 10.1111/pce.14498
- He Y, He X, Wang X, Hao M, Gao J, Wang Y, Yang ZN, Meng X. An EPFL peptide signaling pathway promotes stamen elongation via enhancing filament cell proliferation to ensure successful self-pollination in Arabidopsis thaliana. New Phytologist. 2023;238(3):1045-1058. doi: 10.1111/nph.18806
- Jangra R, Brunetti SC, Wang X, Kaushik P, Gulick PJ, Foroud NA, Wang S, Lee JS. Duplicated antagonistic EPF peptides optimize grass stomatal initiation. Development. 2021;148(16):dev199780. doi: 10.1242/dev.199780
- Caine RS, Chater CC, Kamisugi Y, Cuming AC, Beerling DJ, Gray JE, Fleming AJ. An ancestral stomatal patterning module revealed in the non-vascular land plant Physcomitrella patens. Development. 2016;143(18):3306-3314. doi: 10.1242/dev.135038
- Uzair M, Urquidi Camacho RA, Liu Z, Overholt AM, DeGennaro D, Zhang L, Herron BS, Hong T, Shpak ED. An updated model of shoot apical meristem regulation by ERECTA family and CLAVATA3 signaling pathways in Arabidopsis. Development. 2024;151(12):dev202870. doi: 10.1242/dev.202870
- Ikematsu S, Tasaka M, Torii KU, Uchida N. ERECTA-family receptor kinase genes redundantly prevent premature progression of secondary growth in the Arabidopsis hypocotyl. New Phytol. 2017;213(4):1697-1709. doi: 10.1111/nph.14335
- Uchida N, Tasaka M. Regulation of plant vascular stem cells by endodermis-derived EPFL-family peptide hormones and phloem-expressed ERECTA-family receptor kinases. J. Exp. Bot. 2013;64(17):5335-5343. doi: 10.1093/jxb/ert196
- Yuan B, Wang H. Peptide Signaling Pathways Regulate Plant Vascular Development. Front Plant Sci. 2021;12:719606. doi: 10.3389/fpls.2021.719606
- Hu Y, Xie Q, Chua NH. The Arabidopsis Auxin-Inducible Gene ARGOS Controls Lateral Organ Size. The Plant Cell. 2003;15(9):1951-1961. doi: 10.1105/tpc.013557
- Guo T, Lu ZQ, Xiong Y, Shan JX, Ye WW, Dong NQ, Kan Y, Yang YB, Zhao HY, Yu HX, et al. Optimization of rice panicle architecture by specifically suppressing ligand–receptor pairs. Nat Commun. 2023;14(1):1640. doi: 10.1038/s41467-023-37326-x
- Guo T, Lu ZQ, Shan JX, Ye WW, Dong NQ, Lin HX. ERECTA1 Acts Upstream of the OsMKKK10-OsMKK4-OsMPK6 Cascade to Control Spikelet Number by Regulating Cytokinin Metabolism in Rice. Plant Cell. 2020;32(9):2763-2779. doi: 10.1105/tpc.20.00351
- Sun Q, Qu J, Yu Y, Yang Z, Wei S, Wu Y, Yang J, Peng Z. TaEPFL1, an EPIDERMAL PATTERNING FACTOR-LIKE (EPFL) secreted peptide gene, is required for stamen development in wheat. Genetica. 2019;147(2):121-130. doi: 10.1007/s10709-019-00061-7
- Huang Y, Tao Z, Liu Q, Wang X, Yu J, Liu G, Wang H. BnEPFL6, an EPIDERMAL PATTERNING FACTOR-LIKE (EPFL) secreted peptide gene, is required for filament elongation in Brassica napus. Plant Mol Biol. 2014;85(4):505-517. doi: 10.1007/s11103-014-0200-2
- Jin J, Hua L, Zhu Z, Tan L, Zhao X, Zhang W, Liu F, Fu Y, Cai H, Sun X, et al. GAD1 Encodes a Secreted Peptide That Regulates Grain Number, Grain Length, and Awn Development in Rice Domestication. The Plant Cell. 2016;28(10):2453-2463. doi: 10.1105/tpc.16.00379
- Xia H, Wang Q, Chen Z, Sun X, Zhao F, Zhang D, Fei J, Zhao R, Yin Y. Identification and Functional Analysis of the EPF/EPFL Gene Family in Maize (Zea mays L.): Implications for Drought Stress Response. Agronomy. 2024;14(8):1734. doi: 10.3390/agronomy14081734
- Jiang Q, Yang J, Wang Q, Zhou K, Mao K, Ma F. Overexpression of MdEPF2 improves water use efficiency and reduces oxidative stress in tomato. Environmental and Experimental Botany. 2019;162:321-332. doi: 10.1016/j.envexpbot.2019.03.009
- Liu S, Wang C, Jia F, An Y, Liu C, Xia X, Yin W. Secretory peptide PdEPF2 enhances drought tolerance by modulating stomatal density and regulates ABA response in transgenic Arabidopsis thaliana. Plant Cell Tiss Organ Cult. 2016;125(3):419-431. doi: 10.1007/s11240-016-0957-x
- Lyapina I, Ganaeva D, Rogozhin EA, Ryabukhina EV, Ryazantsev DYu, Lazarev V, Alieva SE, Mamaeva A, Fesenko I. Comparative analysis of small secreted peptide signaling during defense response: insights from vascular and non-vascular plants. Physiologia Plantarum. 2025;177(2):e70147. doi: 10.1111/ppl.70147
- Slezina MP, Istomina EA, Korostyleva TV, Kovtun AS, Kasianov AS, Konopkin AA, Shcherbakova LA, Odintsova TI. Molecular Insights into the Role of Cysteine-Rich Peptides in Induced Resistance to Fusarium oxysporum Infection in Tomato Based on Transcriptome Profiling. Int. J. Mol. Sci. 2021;22(11):5741. doi: 10.3390/ijms22115741
- Jordá L, Sopeña-Torres S, Escudero V, Nuñez-Corcuera B, Delgado-Cerezo M, Torii KU, Molina A. ERECTA and BAK1 Receptor Like Kinases Interact to Regulate Immune Responses in Arabidopsis. Front Plant Sci. 2016;7:897. doi: 10.3389/fpls.2016.00897
- Tateda C, Obara K, Abe Y, Sekine R, Nekoduka S, Hikage T, Nishihara M, Sekine KT, Fujisaki K. The Host Stomatal Density Determines Resistance to Septoria gentianae in Japanese Gentian. MPMI. 2019;32(4):428-436. doi: 10.1094/MPMI-05-18-0114-R
- Godiard L, Sauviac L, Torii KU, Grenon O, Mangin B, Grimsley NH, Marco Y. ERECTA, an LRR receptor-like kinase protein controlling development pleiotropically affects resistance to bacterial wilt. Plant J. 2003;36(3):353-365. doi: 10.1046/j.1365-313X.2003.01877.x
- Adie BAT, Pérez-Pérez J, Pérez-Pérez MM, Godoy M, Sánchez-Serrano JJ, Schmelz EA, Solano R. ABA Is an Essential Signal for Plant Resistance to Pathogens Affecting JA Biosynthesis and the Activation of Defenses in Arabidopsis. The Plant Cell. 2007;19(5):1665-1681. doi: 10.1105/tpc.106.048041
- Häffner E, Karlovsky P, Splivallo R, Traczewska A, Diederichsen E. ERECTA, salicylic acid, abscisic acid, and jasmonic acid modulate quantitative disease resistance of Arabidopsis thaliana to Verticillium longisporum. BMC Plant Biol. 2014;14(1):85. doi: 10.1186/1471-2229-14-85
- Cai H, Huang Y, Chen F, Liu L, Chai M, Zhang M, Yan M, Aslam M, He Q, Qin Y. ERECTA signaling regulates plant immune responses via chromatin-mediated promotion of WRKY33 binding to target genes. New Phytol. 2021;230(2):737-756. doi: 10.1111/nph.17200
- Llorente F, Alonso-Blanco C, Sánchez-Rodriguez C, Jorda L, Molina A. ERECTA receptor-like kinase and heterotrimeric G protein from Arabidopsis are required for resistance to the necrotrophic fungus Plectosphaerella cucumerina. Plant J. 2005;43(2):165-180. doi: 10.1111/j.1365-313X.2005.02440.x
- Sánchez-Rodríguez C, Estévez JM, Llorente F, Hernández-Blanco C, Jordá L, Pagán I, Berrocal M, Marco Y, Somerville S, Molina A. The ERECTA Receptor-Like Kinase Regulates Cell Wall–Mediated Resistance to Pathogens in Arabidopsis thaliana. MPMI. 2009;22(8):953-963. doi: 10.1094/MPMI-22-8-0953
- Sopeña-Torres S, Jordá L, Sánchez-Rodríguez C, Miedes E, Escudero V, Swami S, López G, Piślewska-Bednarek M, Lassowskat I, Lee J, et al. YODA MAP3K kinase regulates plant immune responses conferring broad-spectrum disease resistance. New Phytol. 2018;218(2):661-680. doi: 10.1111/nph.15007
Дополнительные файлы

