The role of EPFL peptides in plant development and stress responses
- 作者: Maiboroda A.D.1, Makeeva A.A.1, Azarkina R.A.1, Barashkova A.S.1,2, Mamaeva A.S.1
-
隶属关系:
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences
- All-Russian Institute of Plant Protection
- 期: 卷 17, 编号 4 (2025)
- 页面: 52-63
- 栏目: Reviews
- URL: https://journals.rcsi.science/2075-8251/article/view/365059
- DOI: https://doi.org/10.32607/actanaturae.27675
- ID: 365059
如何引用文章
详细
Cysteine-rich peptides belonging to the EPF/EPFL (epidermal patterning factor/epidermal patterning factor-like) family are common in many plants, from mosses to angiosperms. EPF/EPFL play an important role in morphogenesis: they regulate stomatal patterning, the functioning of the shoot apical and lateral meristems, inflorescence architecture, vascular development, growth of leaf margin, as well as the development of flowers and fruits. Recent studies have indicated that EPFL may be involved in plant adaptation to biotic and abiotic stress. This review examines the structure, phylogenetic distribution, mechanisms of signal transduction, and functions of the EPF/EPFL peptide family.
作者简介
Aleksandra Maiboroda
Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences
Email: alesandamay@yandex.ru
俄罗斯联邦, Moscow, 117997
Arina Makeeva
Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences
Email: aryamakeeva@gmail.com
俄罗斯联邦, Moscow, 117997
Regina Azarkina
Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences
Email: Khazigaleeva.regina@gmail.com
俄罗斯联邦, Moscow, 117997
Anna Barashkova
Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences; All-Russian Institute of Plant Protection
Email: barashkova.an@gmail.com
俄罗斯联邦, Moscow, 117997; St. Petersburg, Pushkin, 196608
Anna Mamaeva
Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences
编辑信件的主要联系方式.
Email: AnnetteSt@yandex.ru
俄罗斯联邦, Moscow, 117997
参考
- Fukuda H, Hardtke CS. Peptide Signaling Pathways in Vascular Differentiation. Plant Physiol. 2020;182(4):1636–1644. doi: 10.1104/pp.19.01259
- Mamaeva A, Makeeva A, Ganaeva D. The Small Key to the Treasure Chest: Endogenous Plant Peptides Involved in Symbiotic Interactions. Plants (Basel). 2025;14(3):378. doi: 10.3390/plants14030378
- Pearce G, Strydom D, Johnson S, Ryan CA. A Polypeptide from Tomato Leaves Induces Wound-Inducible Proteinase Inhibitor Proteins. Science. 1991;253(5022):895–897. doi: 10.1126/science.253.5022.895
- Tavormina P, De Coninck B, Nikonorova N, De Smet I, Cammue BP. The Plant Peptidome: An Expanding Repertoire of Structural Features and Biological Functions. Plant Cell. 2015;27(8):2095–2118. doi: 10.1105/tpc.15.00440
- Stintzi A, Schaller A. Biogenesis of post-translationally modified peptide signals for plant reproductive development. Curr Opin Plant Biol. 2022;69:102274. doi: 10.1016/j.pbi.2022.102274
- Feng YZ, Zhu QF, Xue J, Chen P, Yu Y. Shining in the dark: the big world of small peptides in plants. aBIOTECH. 2023;4(3):238–256. doi: 10.1007/s42994-023-00100-0
- Gancheva MS, Malovichko YV, Poliushkevich LO, Dodueva IE, Lutova LA. Plant Peptide Hormones. Russ J Plant Physiol. 2019;66:171–189. doi: 10.1134/S1021443719010072
- Okada T, Yoshizumi H, Terashima Y. A Lethal Toxic Substance for Brewing Yeast in Wheat and Barley: Part I. Assay of Toxicity on Various Grains, and Sensitivity of Various Yeast StrainsPart II. Isolation and Some Properties of Toxic Principle. J Agric Biol Chem. 1970;34(7):1084–1094. doi: 10.1080/00021369.1970.10859736
- van der Weerden NL, Bleackley MR, Anderson MA. Properties and mechanisms of action of naturally occurring antifungal peptides. Cell Mol Life Sci. 2013;70(19):3545–3570. doi: 10.1007/s00018-013-1260-1
- Hara K, Kajita R, Torii KU, Bergmann DC, Kakimoto T. The secretory peptide gene EPF1 enforces the stomatal one-cell-spacing rule. Genes Dev. 2007;21(14):1720–1725. doi: 10.1101/gad.1550707
- Sugano SS, Shimada T, Imai Y, et al. Stomagen positively regulates stomatal density in Arabidopsis. Nature. 2010;463(7278):241–244. doi: 10.1038/nature08682
- Maróti G, Downie JA, Kondorosi É. Plant cysteine-rich peptides that inhibit pathogen growth and control rhizobial differentiation in legume nodules. Curr Opin Plant Biol. 2015;26:57–63. doi: 10.1016/j.pbi.2015.05.031
- Hunt L, Gray JE. The Signaling Peptide EPF2 Controls Asymmetric Cell Divisions during Stomatal Development. Curr Biol. 2009;19(10):864–869. doi: 10.1016/j.cub.2009.03.069
- Richardson LGL, Torii KU. Take a deep breath: peptide signalling in stomatal patterning and differentiation. J Exp Bot. 2013;64(17):5243–5251. doi: 10.1093/jxb/ert246
- Lee JS, Kuroha T, Hnilova M, et al. Direct interaction of ligand–receptor pairs specifying stomatal patterning. Genes Dev. 2012;26(2):126–136. doi: 10.1101/gad.179895.111
- Silverstein KAT, Moskal WA Jr, Wu HC, et al. Small cysteine-rich peptides resembling antimicrobial peptides have been under-predicted in plants. Plant J. 2007;51(2):262–280. doi: 10.1111/j.1365-313X.2007.03136.x
- Finkina EI, Melnikova DN, Bogdanov IV, Ovchinnikova TV. Peptides of the innate immune system of plants. Part I. Structure, biological activity and mechanisms of action. Rus J Bioorgan Chem. 2019;45(1):3–16. doi: 10.1134/S013234231901007X
- Finkina EI, Melnikova DN, Bogdanov IV, Ovchinnikova TV. Peptides of the innate immune system of plants. Part II. Biosynthesis, biological functions, and possible practical applications. Rus J Bioorgan Chem. 2019;45(2):55–65. doi: 10.1134/S1068162019020043
- Ohki S, Takeuchi M, Mori M. The NMR structure of stomagen reveals the basis of stomatal density regulation by plant peptide hormones. Nat Commun. 2011;2:512. doi: 10.1038/ncomms1520
- Kondo T, Kajita R, Miyazaki A, et al. Stomatal Density is Controlled by a Mesophyll-Derived Signaling Molecule. Plant Cell Physiol. 2010;51(1):1–8. doi: 10.1093/pcp/pcp180
- Lin G, Zhang L, Han Z, et al. A receptor-like protein acts as a specificity switch for the regulation of stomatal development. Genes Dev. 2017;31(9):927–938. doi: 10.1101/gad.297580.117
- Rowe MH, Bergmann DC. Complex signals for simple cells: the expanding ranks of signals and receptors guiding stomatal development. Curr Opin Plant Biol. 2010;13(5):548–555. doi: 10.1016/j.pbi.2010.06.002
- Hara K, Yokoo T, Kajita R, et al. Epidermal cell density is autoregulated via a secretory peptide, EPIDERMAL PATTERNING FACTOR 2 in Arabidopsis leaves. Plant Cell Physiol. 2009;50(6):1019–1031. doi: 10.1093/pcp/pcp068
- Tabata R, Sawa S. Maturation processes and structures of small secreted peptides in plants. Front Plant Sci. 2014;5:311. doi: 10.3389/fpls.2014.00311
- Olsson V, Joos L, Zhu S, Gevaert K, Butenko MA, De Smet I. Look Closely, the Beautiful May Be Small: Precursor-Derived Peptides in Plants. Annu Rev Plant Biol. 2019;70:153–186. doi: 10.1146/annurev-arplant-042817-040413
- Abramson J, Adler J, Dunger J, et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature. 2024;630(8016):493–500. doi: 10.1038/s41586-024-07487-w
- Wang H, Ngwenyama N, Liu Y, Walker JC, Zhang S. Stomatal Development and Patterning Are Regulated by Environmentally Responsive Mitogen-Activated Protein Kinases in Arabidopsis. Plant Cell. 2007;19(1):63–73. doi: 10.1105/tpc.106.048298
- Takata N, Yokota K, Ohki S, Mori M, Taniguchi T, Kurita M. Evolutionary relationship and structural characterization of the EPF/EPFL gene family. PLoS One. 2013;8(6):e65183. doi: 10.1371/journal.pone.0065183
- Bowman JL, Kohchi T, Yamato KT, et al. Insights into Land Plant Evolution Garnered from the Marchantia polymorpha Genome. Cell. 2017;171(2):287–304.e15. doi: 10.1016/j.cell.2017.09.030
- Rychel AL, Peterson KM, Torii KU. Plant twitter: ligands under 140 amino acids enforcing stomatal patterning. J Plant Res. 2010;123(3):275–280. doi: 10.1007/s10265-010-0330-9
- Caine RS, Chater CC, Kamisugi Y, et al. An ancestral stomatal patterning module revealed in the non-vascular land plant Physcomitrella patens. Development. 2016;143(18):3306–3314. doi: 10.1242/dev.135038
- Caine RS, Chater CCC, Fleming AJ, Gray JE. Stomata and Sporophytes of the Model Moss Physcomitrium patens. Front Plant Sci. 2020;11:643. doi: 10.3389/fpls.2020.00643
- Jia M, Wang Y, Jin H, et al. Comparative Genomics Analysis of the Populus Epidermal Pattern Factor (EPF) Family Revealed Their Regulatory Effects in Populus euphratica Stomatal Development. Int J Mol Sci. 2024;25(18):10052. doi: 10.3390/ijms251810052
- Li P, Zhao Z, Wang W, et al. Genome-wide analyses of member identification, expression pattern, and protein–protein interaction of EPF/EPFL gene family in Gossypium. BMC Plant Biol. 2024;24(1):554. doi: 10.1186/s12870-024-05262-7
- McElwain JC, Chaloner WG. Stomatal Density and Index of Fossil Plants Track Atmospheric Carbon Dioxide in the Palaeozoic. Annals Bot. 1995;76(4):389–395. doi: 10.1006/anbo.1995.1112
- Qiao R, Yang J, Deng Y, et al. Genome-Wide Identification of Epidermal Pattern Factor (EPF) Gene Family in Potato and Functional Characterization of StEPF4 in Regulating Drought Stress. Agronomy. 2024;14(12):2948. doi: 10.3390/agronomy14122948
- Wang S, Wang W, Chen J, et al. Comprehensive Identification and Expression Profiling of Epidermal Pattern Factor (EPF) Gene Family in Oilseed Rape (Brassica napus L.) under Salt Stress. Genes. 2024;15(7):912. doi: 10.3390/genes15070912
- Liu S, Chen T, Li X, Cui J, Tian Y. Genome-wide identification and expression analysis of EPF/EPFL gene family in Populus trichocarpa. Front Genet. 2024;15:1432376. doi: 10.3389/fgene.2024.1432376
- Xiong L, Huang Y, Liu Z, et al. Small EPIDERMAL PATTERNING FACTOR-LIKE2 peptides regulate awn development in rice. Plant Physiol. 2022;190(1):516–531. doi: 10.1093/plphys/kiac278
- Zhiling L, Wenhua D, Fangyuan Z. Genome-wide identification and phylogenetic and expression pattern analyses of EPF/EPFL family genes in the Rye (Secale cereale L.). BMC Genomics. 2024;25(1):532. doi: 10.1186/s12864-024-10425-9
- Jiao Z, Wang J, Shi Y, et al. Genome-Wide Identification and Analysis of the EPF Gene Family in Sorghum bicolor (L.) Moench. Plants (Basel). 2023;12(22):3912. doi: 10.3390/plants12223912
- Liu R, Xu K, Li Y, et al. Investigation on the Potential Functions of ZmEPF/EPFL Family Members in Response to Abiotic Stress in Maize. Int J Mol Sci. 2024;25(13):7196. doi: 10.3390/ijms25137196
- Wei D, Chang P, Liu JY, et al. Genome-wide identification of EPF/EPFL gene family in wheat (Triticum aestivum) and analysis of TaEPF1-2B associated with stomatal traits. J Triticeae Crop. 2021;41(11):1317–1329. doi: 10.7606/j.issn.1009-1041.2021.11.01
- Lee JS, Hnilova M, Maes M, et al. Competitive binding of antagonistic peptides fine-tunes stomatal patterning. Nature. 2015;522(7557):439–443. doi: 10.1038/nature14561
- Hunt L, Bailey KJ, Gray JE. The signalling peptide EPFL9 is a positive regulator of stomatal development. New Phytol. 2010;186(3):609–614. doi: 10.1111/j.1469-8137.2010.03200.x
- Kawamoto N, Carpio DPD, Hofmann A, et al. A Peptide Pair Coordinates Regular Ovule Initiation Patterns with Seed Number and Fruit Size. Curr Biol. 2020;30(22):4352–4361.e4. doi: 10.1016/j.cub.2020.08.050
- Tameshige T, Ikematsu S, Torii KU, Uchida N. Stem development through vascular tissues: EPFL–ERECTA family signaling that bounces in and out of phloem. J Exp Bot. 2017;68(1):45–53. doi: 10.1093/jxb/erw447
- Kosentka PZ, Overholt A, Maradiaga R, Mitoubsi O, Shpak ED. EPFL Signals in the Boundary Region of the SAM Restrict Its Size and Promote Leaf Initiation. Plant Physiol. 2019;179(1):265–279. doi: 10.1104/pp.18.00714
- Fujihara R, Uchida N, Tameshige T, et al. The boundary-expressed EPIDERMAL PATTERNING FACTOR-LIKE2 gene encoding a signaling peptide promotes cotyledon growth during Arabidopsis thaliana embryogenesis. Plant Biotechnol (Tokyo). 2021;38(3):317–322. doi: 10.5511/plantbiotechnology.21.0508a
- Kimura Y, Tasaka M, Torii KU, Uchida N. ERECTA-family genes coordinate stem cell functions between the epidermal and internal layers of the shoot apical meristem. Development. 2018;145(1):dev156380. doi: 10.1242/dev.156380
- Zhang L, DeGennaro D, Lin G, Chai J, Shpak ED. ERECTA family signaling constrains CLAVATA3 and WUSCHEL to the center of the shoot apical meristem. Development. 2021;148(5):dev189753. doi: 10.1242/dev.189753
- Huang Y, Chai M, Xi X, et al. Functional analysis of EPF/EPFL genes in Arabidopsis resistance to Sclerotinia sclerotiorum. J Fujian Agric For Univ (Nat Sci Ed). 2022;51(4):486–492.
- Uchida N, Lee JS, Horst RJ, et al. Regulation of inflorescence architecture by intertissue layer ligand–receptor communication between endodermis and phloem. Proc Natl Acad Sci U S A. 2012;109(16):6337–6342. doi: 10.1073/pnas.1117537109
- Cai H, Huang Y, Liu L, et al. Signaling by the EPFL-ERECTA family coordinates female germline specification through the BZR1 family in Arabidopsis. Plant Cell. 2023;35(5):1455–1473. doi: 10.1093/plcell/koad032
- Li M, Lv M, Wang X, et al. The EPFL–ERf–SERK signaling controls integument development in Arabidopsis. New Phytol. 2023;238(1):186–201. doi: 10.1111/nph.18701
- Negoro S, Hirabayashi T, Iwasaki R, Torii KU, Uchida N. EPFL peptide signalling ensures robust self-pollination success under cool temperature stress by aligning the length of the stamen and pistil. Plant Cell Environ. 2023;46(2):451–463. doi: 10.1111/pce.14498
- He Y, He X, Wang X, et al. An EPFL peptide signaling pathway promotes stamen elongation via enhancing filament cell proliferation to ensure successful self-pollination in Arabidopsis thaliana. New Phytol. 2023;238(3):1045–1058. doi: 10.1111/nph.18806
- Jangra R, Brunetti SC, Wang X, et al. Duplicated antagonistic EPF peptides optimize grass stomatal initiation. Development. 2021;148(16):dev199780. doi: 10.1242/dev.199780
- Caine RS, Chater CC, Kamisugi Y, et al. An ancestral stomatal patterning module revealed in the non-vascular land plant Physcomitrella patens. Development. 2016;143(18):3306–3314. doi: 10.1242/dev.135038
- Uzair M, Urquidi Camacho RA, Liu Z, et al. An updated model of shoot apical meristem regulation by ERECTA family and CLAVATA3 signaling pathways in Arabidopsis. Development. 2024;151(12):dev202870. doi: 10.1242/dev.202870
- Ikematsu S, Tasaka M, Torii KU, Uchida N. ERECTA-family receptor kinase genes redundantly prevent premature progression of secondary growth in the Arabidopsis hypocotyl. New Phytol. 2017;213(4):1697–1709. doi: 10.1111/nph.14335
- Uchida N, Tasaka M. Regulation of plant vascular stem cells by endodermis-derived EPFL-family peptide hormones and phloem-expressed ERECTA-family receptor kinases. J Exp Bot. 2013;64(17):5335–5343. doi: 10.1093/jxb/ert196
- Yuan B, Wang H. Peptide Signaling Pathways Regulate Plant Vascular Development. Front Plant Sci. 2021;12:719606. doi: 10.3389/fpls.2021.719606
- Hu Y, Xie Q, Chua NH. The Arabidopsis Auxin-Inducible Gene ARGOS Controls Lateral Organ Size. Plant Cell. 2003;15(9):1951–1961. doi: 10.1105/tpc.013557
- Guo T, Lu ZQ, Xiong Y, et al. Optimization of rice panicle architecture by specifically suppressing ligand–receptor pairs. Nat Commun. 2023;14(1):1640. doi: 10.1038/s41467-023-37326-x
- Guo T, Lu ZQ, Shan JX, Ye WW, Dong NQ, Lin HX. ERECTA1 Acts Upstream of the OsMKKK10-OsMKK4-OsMPK6 Cascade to Control Spikelet Number by Regulating Cytokinin Metabolism in Rice. Plant Cell. 2020;32(9):2763–2779. doi: 10.1105/tpc.20.00351
- Sun Q, Qu J, Yu Y, et al. TaEPFL1, an EPIDERMAL PATTERNING FACTOR-LIKE (EPFL) secreted peptide gene, is required for stamen development in wheat. Genetica. 2019;147(2):121–130. doi: 10.1007/s10709-019-00061-7
- Huang Y, Tao Z, Liu Q, et al. BnEPFL6, an EPIDERMAL PATTERNING FACTOR-LIKE (EPFL) secreted peptide gene, is required for filament elongation in Brassica napus. Plant Mol Biol. 2014;85(4–5):505–517. doi: 10.1007/s11103-014-0200-2
- Jin J, Hua L, Zhu Z, et al. GAD1 Encodes a Secreted Peptide That Regulates Grain Number, Grain Length, and Awn Development in Rice Domestication. Plant Cell. 2016;28(10):2453–2463. doi: 10.1105/tpc.16.00379
- Xia H, Wang Q, Chen Z, et al. Identification and Functional Analysis of the EPF/EPFL Gene Family in Maize (Zea mays L.): Implications for Drought Stress Response. Agronomy. 2024;14(8):1734. doi: 10.3390/agronomy14081734
- Jiang Q, Yang J, Wang Q, Zhou K, Mao K, Ma F. Overexpression of MdEPF2 improves water use efficiency and reduces oxidative stress in tomato. Environ Exp Bot. 2019;162:321–332. doi: 10.1016/j.envexpbot.2019.03.009
- Liu S, Wang C, Jia F, et al. Secretory peptide PdEPF2 enhances drought tolerance by modulating stomatal density and regulates ABA response in transgenic Arabidopsis thaliana. Plant Cell Tissue Organ Cult. 2016;125(3):419–431. doi: 10.1007/s11240-016-0957-x
- Lyapina I, Ganaeva D, Rogozhin EA, et al. Comparative analysis of small secreted peptide signaling during defense response: insights from vascular and non-vascular plants. Physiol Plant. 2025;177(2):e70147. doi: 10.1111/ppl.70147
- Slezina MP, Istomina EA, Korostyleva TV, et al. Molecular Insights into the Role of Cysteine-Rich Peptides in Induced Resistance to Fusarium oxysporum Infection in Tomato Based on Transcriptome Profiling. Int J Mol Sci. 2021;22(11):5741. doi: 10.3390/ijms22115741
- Jordá L, Sopeña-Torres S, Escudero V, et al. ERECTA and BAK1 Receptor Like Kinases Interact to Regulate Immune Responses in Arabidopsis. Front Plant Sci. 2016;7:897. doi: 10.3389/fpls.2016.00897
- Tateda C, Obara K, Abe Y, et al. The Host Stomatal Density Determines Resistance to Septoria gentianae in Japanese Gentian. Mol Plant Microbe Interact. 2019;32(4):428–436. doi: 10.1094/MPMI-05-18-0114-R
- Godiard L, Sauviac L, Torii KU, et al. ERECTA, an LRR receptor-like kinase protein controlling development pleiotropically affects resistance to bacterial wilt. Plant J. 2003;36(3):353–365. doi: 10.1046/j.1365-313X.2003.01877.x
- Adie BAT, Pérez-Pérez J, Pérez-Pérez MM, et al. ABA Is an Essential Signal for Plant Resistance to Pathogens Affecting JA Biosynthesis and the Activation of Defenses in Arabidopsis. Plant Cell. 2007;19(5):1665–1681. doi: 10.1105/tpc.106.048041
- Häffner E, Karlovsky P, Splivallo R, Traczewska A, Diederichsen E. ERECTA, salicylic acid, abscisic acid, and jasmonic acid modulate quantitative disease resistance of Arabidopsis thaliana to Verticillium longisporum. BMC Plant Biol. 2014;14:85. doi: 10.1186/1471-2229-14-85
- Cai H, Huang Y, Chen F, et al. ERECTA signaling regulates plant immune responses via chromatin-mediated promotion of WRKY33 binding to target genes. New Phytol. 2021;230(2):737–756. doi: 10.1111/nph.17200
- Llorente F, Alonso-Blanco C, Sánchez-Rodriguez C, Jorda L, Molina A. ERECTA receptor-like kinase and heterotrimeric G protein from Arabidopsis are required for resistance to the necrotrophic fungus Plectosphaerella cucumerina. Plant J. 2005;43(2):165–180. doi: 10.1111/j.1365-313X.2005.02440.x
- Sánchez-Rodríguez C, Estévez JM, Llorente F, et al. The ERECTA Receptor-Like Kinase Regulates Cell Wall–Mediated Resistance to Pathogens in Arabidopsis thaliana. Mol Plant Microbe Interact. 2009;22(8):953–963. doi: 10.1094/MPMI-22-8-0953
- Sopeña-Torres S, Jordá L, Sánchez-Rodríguez C, et al. YODA MAP3K kinase regulates plant immune responses conferring broad-spectrum disease resistance. New Phytol. 2018;218(2):661–680. doi: 10.1111/nph.15007
补充文件

