Transient changes in blood-brain barrier permeability after FUS thalamotomy

Cover Page

Cite item

Abstract

The study presents an observation of magnetic resonance imaging (MRI) data changes and clinical manifestations in a patient who underwent MRI-guided focused ultrasound (FUS) thalamotomy for upper limb tremor treatment. A 69-year-old patient with Parkinson’s disease received FUS treatment, followed by contrast-enhanced MRI scans at 2 hours, 24 hours, 1 month, 3 months, 6 months, and 12 months post-procedure. The paper describes natural progression patterns of brain lesion changes after the intervention with correlation to MR contrast agent (MRCA) accumulation. MRI findings revealed an altered signal intensity area in the FUS target area. Peak MRCA accumulation was observed at 2 hours and 1 month post-procedure, with marked regression of contrast enhancement intensity by 24 hours. FUS demonstrated significant potential as a method for targeted temporary blood-brain barrier permeability disruption, while contrast-enhanced brain MRI proved valuable for assessing permeability alteration severity.

About the authors

Mikhail B. Dolgushin

Federal Center of Brain Research and Neurotechnologies

Author for correspondence.
Email: mdolgushin@mail.ru
ORCID iD: 0000-0003-3930-5998

D. Sci. (Med.), Professor, Head, Department of X-ray and radionuclide diagnostic methods

Russian Federation, Moscow

Christina A. Prishchepina

Federal Center of Brain Research and Neurotechnologies

Email: kprishchepina@mail.ru
ORCID iD: 0009-0009-4522-161X

radiologist

Russian Federation, Moscow

Ivan S. Gumin

Federal Center of Brain Research and Neurotechnologies; Moscow State University

Email: mdolgushin@mail.ru
ORCID iD: 0000-0003-2360-3261

radiologist, radiologist, Research and educational center

Russian Federation, Moscow; Moscow

Elena A. Katunina

Federal Center of Brain Research and Neurotechnologies; Pirogov Russian National Medical Research University

Email: mdolgushin@mail.ru
ORCID iD: 0000-0001-5805-486X

D. Sci. (Med.), Professor, Head, Department of neurodegenerative diseases

Russian Federation, Moscow; Moscow

Ilya V. Senko

Federal Center of Brain Research and Neurotechnologies

Email: mdolgushin@mail.ru
ORCID iD: 0000-0002-5743-8279

D. Sci. (Med.), Head, Neurosurgical department, Federal Center for Brain and Neurotechnology

Russian Federation, Moscow

Raisa T. Tairova

Federal Center of Brain Research and Neurotechnologies; Pirogov Russian National Medical Research University

Email: mdolgushin@mail.ru
ORCID iD: 0000-0002-4174-7114

D. Sci. (Med.), Professor, сhief physician, Medical Director, Associate Professor, Department of neurology, neurosurgery and medical genetics

Russian Federation, Moscow; Moscow

Andrey V. Dvoryanchikov

Federal Center of Brain Research and Neurotechnologies

Email: mdolgushin@mail.ru
ORCID iD: 0009-0009-0678-7821

engineer

Russian Federation, Moscow

References

  1. Pardridge WM. Drug transport across the blood–brain barrier. J Cereb Blood Flow Metab. 2012;32(11):1959–1772. doi: 10.1038/jcbfm.2012.126
  2. Daneman R. The blood-brain barrier in health and disease. Ann Neurol. 2012;72(5):648–672. doi: 10.1002/ana.23648
  3. Jain KK. Nanobiotechnology-based strategies for crossing the blood-brain barrier. Nanomedicine (Lond). 2012;7(8):1225–1233. doi: 10.2217/nnm.12.86
  4. Wang H, Wang B, Normoyle KP, et al. Brain temperature and its fundamental properties: a review for clinical neuroscientists. Front Neurosci. 2014;8:307. doi: 10.3389/fnins.2014.00307
  5. Mehta RI, Carpenter JS, Mehta RI, et al. Blood-brain barrier opening with MRI-guided focused ultrasound elicits meningeal venous permeability in humans with early alzheimer disease. Radiology. 2021;298(3):654–662. doi: 10.1148/radiol.2021200643
  6. Ohye C, Higuchi Y, Shibazaki T, et al. Gamma Knife thalamotomy for Parkinson disease and essential tremor: a prospective multicenter study. Neurosurgery. 2012;70(3):526–535. doi: 10.1227/NEU.0b013e3182350893
  7. Foffani G, Trigo-Damas I, Pineda-Pardo JA, et al. Focused ultrasound in Parkinson’s disease: a twofold path toward disease modification. Mov Disord. 2019;34(9):1262–1273. doi: 10.1002/mds.27805
  8. Crawford JR, Deary IJ, Starr J, Whalley LJ. The NART as an index of prior intellectual functioning: a retrospective validity study covering a 66-year interval. Psychol Med. 2001;31(3):451–458. doi: 10.1017/s0033291701003634
  9. Zenaro E, Piacentino G, Constantin G. The blood-brain barrier in Alzheimer’s disease. Neurobiol Dis. 2017;107:41–56. doi: 10.1016/j.nbd.2016.07.007
  10. Larcipretti AL, Gomes FC, Udoma-Udofa OC, et al. Radiosurgical thalamotomy for the management of tremors: a systematic review and meta-analysis. Neurol Sci. 2024;46(1):79–88. doi: 10.1007/s10072-024-07670-x
  11. Иванов П.И., Зубаткина И.С., Бутовская Д.А., Кожокарь Т.И. Радиохирургическое лечение резистентного к медикаментозной терапии тремора при болезни Паркинсона. Нейрохирургия. 2021;23(1):16–25. Ivanov PI, Zubatkina IS, Butovskaya DA, Kozhokar TI. Radiosurgical treatment of medically refractory Parkinson’s tremor. Russian journal of neurosurgery. 2021;23(1):16–25. doi: 10.17650/1683-3295-2021-23-1-16-25
  12. Siedek F, Yeo SY, Heijman E, et al. Magnetic resonance-guided high-intensity focused ultrasound (MR-HIFU): technical background and overview of current clinical applications (Part 1). Rofo. 2019;191(6):522–530. doi: 10.1055/a-0817-5645
  13. McDannold N, Zhang Y, Supko JG, et al. Acoustic feedback enables safe and reliable carboplatin delivery across the blood-brain barrier with a clinical focused ultrasound system and improves survival in a rat glioma model. Theranostics. 2019;9(21):6284–6299. doi: 10.7150/thno.35892
  14. Mehta RI, Ranjan M, Haut MW, et al. Focused ultrasound for neurodegenerative diseases. Magn Reson Imaging Clin N Am. 2024;32(4):681–698. doi: 10.1016/j.mric.2024.03.001
  15. Legon W, Sato TF, Opitz A, et al. Transcranial focused ultrasound modulates the activity of primary somatosensory cortex in humans. Nat Neurosci. 2014;17(2):322–329. doi: 10.1038/nn.3620
  16. Tufail Y, Yoshihiro A, Pati S, et al. Ultrasonic neuromodulation by brain stimulation with transcranial ultrasound. Nat Protoc. 2011;6(9):1453–1470. doi: 10.1038/nprot.2011.371
  17. Kubanek J, Shukla P, Das A, et al. Ultrasound elicits behavioral responses through mechanical effects on neurons and ion channels in a simple nervous system. J Neurosci. 2018;38(12):3081–3091. doi: 10.1523/JNEUROSCI.1458-17.2018
  18. Meng Y, Abrahao A, Heyn CC, et al. Glymphatics visualization after focused ultrasound-induced blood-brain barrier opening in humans. Ann Neurol. 2019;86(6):975–980. doi: 10.1002/ana.25604
  19. Lee W, Kim H, Jung Y, et al. Transcranial focused ultrasound-mediated neurostimulation in psychiatry: a review of the current state and implications for clinical practice. Front Psychiatry. 2021;12:732616. doi: 10.3389/fpsyt.2021.732616
  20. Kennedy JE. High-intensity focused ultrasound in the treatment of solid tumours. Nat Rev Cancer. 2005;5(4):321–327. doi: 10.1038/nrc1591
  21. Blackmore J, Shrivastava S, Jerome J, et al. Ultrasound neuromodulation: a review of results, mechanisms and safety. Ultrasound Med Biol. 2019;45(7):1509–1536. doi: 10.1016/j.ultrasmedbio.2018.12.015
  22. Fomenko A, Chen KHS, Nankoo JF, et al. Low-intensity ultrasound neuromodulation: an overview of mechanisms and emerging human applications. Brain Stimul. 2018;11(6):1209–1217. doi: 10.1016/j.brs.2018.08.013
  23. Daneman R, Prat A. The blood-brain barrier. Cold Spring Harb Perspect Biol. 2015;7(1):a020412. doi: 10.1101/cshperspect.a020412
  24. Elias WJ, Huss D, Voss T, et al. A pilot study of focused ultrasound thalamotomy for essential tremor. N Engl J Med. 2013;369(7):640–648. doi: 10.1056/NEJMoa1300962
  25. Lipsman N, Meng Y, Bethune AJ, et al. Blood-brain barrier opening in Alzheimer’s disease using MR-guided focused ultrasound. Nat Commun. 2018;9(1):2336. doi: 10.1038/s41467-018-04529-6
  26. Chen J, Liu X, Dong X, et al. Focused ultrasound-induced blood-brain barrier opening improves spatial learning and memory by altering amyloid-β and inflammation in Alzheimer’s disease mice. Acta Neuropathol Commun. 2023;11(1):84. doi: 10.1186/s40478-023-01533-w

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Dolgushin M.B., Prishchepina C.A., Gumin I.S., Katunina E.A., Senko I.V., Tairova R.T., Dvoryanchikov A.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).