Quantitative approach in assessing standard brachial plexus MRI for the diagnosis of multifocal motor neuropathy and Lewis–Sumner syndrome

Cover Page

Cite item

Abstract

Introduction. Among various chronic polyneuropathies, there are conditions that pose challenges for differential diagnosis: multifocal motor neuropathy (MMN) and Lewis–Sumner syndrome (LSS). The potential of magnetic resonance imaging (MRI) to objectively assess pathological changes in the nerve structures of brachial plexuses remains highly relevant for the diagnosis and differential diagnosis of MMN and LSS.

The aim of this study is to determine the diagnostic value of quantitative methods for assessing MRI signal intensity and thickness measurements of brachial plexus neural elements in differentiating LSS and MMN.

Materials and methods. The study included 59 patients: 26 diagnosed with MMN, 33 with LSS, along with 15 healthy volunteers.

Results. When comparing the combined patient group (regardless of diagnosis) with healthy controls, both nerve thickness and signal intensity coefficient were significantly higher in patients. Additionally, disease-specific threshold values for signal intensity coefficient were established for each condition.

Conclusion. The analysis of signal intensity coefficients LSS and MMN demonstrates that quantitative assessment of MRI signal intensity from the anterior rami of spinal nerves forming brachial plexuses provides additional diagnostic information about pathological changes and facilitates accurate diagnosis. This approach enables earlier initiation of pathogenetic therapy, reduces disability rates, and shortens the duration of patient incapacitation.

About the authors

Viktoriya V. Sinkova

Russian Center of Neurology and Neurosciences

Author for correspondence.
Email: 000564321@mail.ru
ORCID iD: 0000-0003-2285-2725

postgraduate student, Radiology department

Russian Federation, Moscow

Sofya N. Morozova

Russian Center of Neurology and Neurosciences

Email: morozova@neurology.ru
ORCID iD: 0000-0002-9093-344X

Cand. Sci. (Med.), researcher, Radiology department

Russian Federation, Moscow

Taisiya A. Tumilovich

Russian Center of Neurology and Neurosciences

Email: tumilovich.taisiya@bk.ru
ORCID iD: 0000-0002-9538-9690

neurologist, Center for peripheral nervous system diseases

Russian Federation, Moscow

Natalia A. Suponeva

Russian Center of Neurology and Neurosciences

Email: suponeva@neurology.ru
ORCID iD: 0000-0003-3956-6362

Dr. Sci. (Med.), Corr. Member of RAS, Director, Institute of Neurorehabilitation and Rehabilitation Medicine

Russian Federation, Moscow

Marina V. Krotenkova

Russian Center of Neurology and Neurosciences

Email: krotenkova_mrt@mail.ru
ORCID iD: 0000-0003-3820-4554

Dr. Sci. (Med.), Head, Radiology department

Russian Federation, Moscow

References

  1. Van den Bergh P, van Doorn P, Hadden R, et al. European Academy of Neurology/Peripheral Nerve Society guideline on diagnosis and treatment of chronic inflammatory demyelinating polyradiculoneuropathy: report of a joint Task Force-Second revision. Eur J Neurol. 2021;28(11):3556–3583. doi: 10.1111/ene.14959
  2. Joint Task Force of the EFNS and the PNS. European Federation of Neurological Societies/Peripheral Nerve Society guideline on management of multifocal motor neuropathy. Report of a Joint Task Force of the European Federation of Neurological Societies and the Peripheral Nerve Society — first revision. J Peripher Nerv Syst. 2010;15(4):295–301. doi: 10.1111/j.1529-8027.2010.00290.x
  3. Parry GJ, Sumner AJ. Multifocal motor neuropathy. Neurol Clin. 1992;10(3):671–684.
  4. Van den Bergh PYK, van Doorn PA, Hadden RDM, et al. European Academy of Neurology/Peripheral Nerve Society guideline on diagnosis and treatment of chronic inflammatory demyelinating polyradiculoneuropathy: report of a joint Task Force—Second revision. J Peripher Nerv Syst. 2021;26(3):242–268. doi: 10.1111/jns.12455
  5. Kaji R, Kimura J. Facts and fallacies on anti-GM1 antibodies: physiology of motor neuropathies. Brain. 1999;122(Pt 5):797–798. doi: 10.1093/brain/122.5.797
  6. Pahud de Mortanges A, Sinaci E, Salvador D, et al. GLP-1 Receptor agonists and coronary arteries: from mechanisms to events. Front Pharmacol. 2022;13:856111. doi: 10.3389/fphar.2022.856111
  7. Гапешин Р.А., Баранцевич Е.Р., Яковлев А.А. Патогенез, особенности клинической картины и лабораторной диагностики хронической воспалительной демиелинизирующей полинейропатии. Учёные записки СПбГМУ им. акад. И. П. Павлова. 2018;25(3):14–24. Gapeshin RA, Barantsevich ER, Yakovlev AA. Pathogenesis, clinical and laboratory features of chronic inflammatory demyelinating polyneuropathy. The Scientific Notes of the Pavlov University. 2018;25(3):14–24. doi: 10.24884/1607-4181-2018-25-3-14-24
  8. Супонева Н.А., Наумова Е.С., Гнедовская Е.В. Хроническая воспалительная демиелинизирующая полинейропатия у взрослых: принципы диагностики и терапия первой линии. Нервно-мышечные болезни. 2016;6(1):44–53. Suponeva NА, Naumovа ES, Gnedovskaya EV. Chronic inflammatory demyelinating polyneuropathy in adults: diagnostic approaches and first line therapy. Neuromuscular Diseases. 2016;6(1):44–53. doi: 10.17650/2222-8721-2016-6-1-44-53
  9. Ризванова А.С., Гришина Д.А., Супонева Н.А. Клиническая гетерогенность хронической воспалительной демиелинизирующей полинейропатии: трудности диагностики. Альманах клинической медицины. 2020;48(1):56–64. Rizvanova AS, Grishina DA, Suponeva NA. Clinical heterogeneity of chronic inflammatory demyelinating polyneuropathy: diagnostic challenges. Almanac of Clinical Medicine. 2020;48(1):56–64. doi: 10.18786/2072-0505-2020-48-007
  10. Tanaka K, Mori N, Yokota Y, Suenaga T. MRI of the cervical nerve roots in the diagnosis of chronic inflammatory demyelinating polyradiculoneuropathy: a single — institution, retrospective case-control study. BMJ Open. 2013;3(8):e003443. doi: 10.1136/bmjopen-2013-003443
  11. Tazawa K, Matsuda M, Yoshida T, et al. Spinal nerve root hypertrophy on MRI: clinical significance in the diagnosis of chronic inflammatory demyelinating polyradiculoneuropathy. Intern Med. 2008;47(23):2019–2024. doi: 10.2169/internalmedicine.47.1272
  12. Lozeron P, Lacour MC, Vandendries C, et al. Contribution of plexus MRI in the diagnosis of atypical chronic inflammatory demyelinating polyneuropathies. J Neurol Sci. 2016; 360:170–175. doi: 10.1016/j.jns.2015.11.048
  13. Kronlage M, Bäumer P, Pitarokoili K, et al. Large coverage MR neurography in CIDP: diagnostic accuracy and electrophysiological correlation. J Neurol. 2017;264(7):1434–1443. doi: 10.1007/s00415-017-8543-7
  14. Simmons A, Tofts PS, Barker GJ, Arridge SR. Sources of intensity nonuniformity in spin echo images at 1.5 T. Magn Reson Med. 1994;32(1):121–128. doi: 10.1002/mrm.1910320117
  15. Chen Y, Haacke EM, Li J. Peripheral nerve magnetic resonance imaging. F1000Res. 2019;8:F1000 Faculty Rev-1803. doi: 10.12688/f1000research.19695.1
  16. Basser PJ, Pierpaoli C. Microstructural features measured using diffusion tensor imaging. J Magn Reson B. 1996;111(3):209–219. doi: 10.1006/jmrb.1996.0086
  17. Carré A, Klausner G, Edjlali M, et al. Standardization of brain MR images across machines and protocols: bridging the gap for MRI-based radiomics. Sci Rep. 2020;10(1):12340. doi: 10.1038/s41598-020-69298-z
  18. Kollmer J., Bendszus M. Magnetic resonance neurography: improved diagnosis of peripheral neuropathies. Neurotherapeutics. 2021;18(4):2368–2383. doi: 10.1007/s13311-021-01166-8
  19. Chhabra A, Andreisek G, Soldatos T, et al. MR neurography: past, present, and future. AJR Am J Roentgenol. 2011;197(3):583–591. doi: 10.2214/AJR.10.6012
  20. Andreisek G, Burg D, Studer A, Weishaupt D. Upper extremity peripheral neuropathies: role and impact of MR imaging on patient management. Eur Radiol. 2008;18(9):1953–1961. doi: 10.1007/s00330-008-0940-y
  21. van Rosmalen MHJ, Goedee HS, van der Gijp A, et al. Low interrater reliability of brachial plexus MRI in chronic inflammatory neuropathies. Muscle Nerve. 2020;61(6):779–783. doi: 10.1002/mus.26821
  22. Bischoff C, Kollmer J, Schulte-Mattler W. State-of-the-art diagnosis of peripheral nerve trauma: clinical examination, electrodiagnostic, and imaging. In: Modern concepts of peripheral nerve repair. Haastert-Talini K, Assmus H, Antoniadis G (eds.). Cham; 2017. doi: 10.1007/978-3-319-52319-4_2

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Sinkova V.V., Morozova S.N., Tumilovich T.A., Suponeva N.A., Krotenkova M.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).