Immunomorphologic assessment of changes in functional astroglial proteins in a kainate-induced hippocampal sclerosis model

Cover Page

Cite item

Abstract

Introduction. Astrocytes are involved in mediator metabolism, neuroplasticity, energy support of neurons and neuroinflammation, and this determines their pathogenetic role in epilepsy.

Aim. This study aimed at evaluating region-specific changes in the distribution of functional astroglial proteins in reactive astrocytes in a kainate-induced model of mesial temporal lobe epilepsy.

Materials and methods. The localization and expression of functional astroglial proteins (i.e. aquaporin-4, connexin-43, EAAT1/2, and glutamine synthetase) in the hippocampus CA3 region, dentate gyrus, and stratum lucidum layer were evaluated by immunofluorescence 28 days after intra-hippocampal administration of kainic acid to animals.

Results. Changes were heterogeneous in different hyppocampus subregions. Astrocytes of the stratum lucidum associated with mossy fibers showed the highest vulnerability and decreased content and/or disturbed localization of the channels and transporters that form membrane complexes in the processes. Disturbances in homeostatic functions of astrocytes aggravated the adverse processes both on the side where the toxin was injected and in the contralateral hippocampus.

About the authors

Dmitry N. Voronkov

Research Center of Neurology

Author for correspondence.
Email: voronkov@neurology.ru
ORCID iD: 0000-0001-5222-5322

Cand. Sci. (Med.), senior researcher, Laboratory of neuromorphology, Brain Institute, Research Center of Neurology

Russian Federation, Moscow

Anna V. Egorova

Research Center of Neurology; Pirogov Russian National Research Medical University

Email: av_egorova@bk.ru
ORCID iD: 0000-0001-7112-2556

Cand. Sci. (Med.), researcher, Neuromorphology laboratory, Brain Institute, Research Center of Neurology; Associate Professor, Department of histology, embryology and cytology, Pirogov Russian National Research Medical University

Russian Federation, Moscow; Moscow

Evgenia N. Fedorova

Research Center of Neurology; Pirogov Russian National Research Medical University

Email: ewgenia.feodorowa2011@yandex.ru
ORCID iD: 0000-0002-2128-9056

research laboratory assistant, Neuromorphology laboratory, Brain Institute, Research Center of Neurology; assistant, Department of histology, embryology and cytology, Pirogov Russian National Research Medical University

Russian Federation, Moscow; Moscow

Alla V. Stavrovskaya

Research Center of Neurology

Email: stavrovskaya.al@gmail.com
ORCID iD: 0000-0002-8689-0934

Cand. Sci. (Biol.), Head, Laboratory of experimental pathology of the nervous system and neuropharmacology, Brain Institute, Research Center of Neurology

Russian Federation, Moscow

Ivan A. Potapov

Research Center of Neurology

Email: potapov.i.a@neurology.ru
ORCID iD: 0000-0002-7471-3738

junior researcher, Laboratory of experimental pathology of the nervous system and neuropharmacology, Brain Institute, Research Center of Neurology

Russian Federation, Moscow

Anastasiya K. Pavlova

Research Center of Neurology

Email: pav_nastasya@mail.ru
ORCID iD: 0009-0006-5653-5524

research laboratory assistant, Laboratory of experimental pathology of the nervous system and neuropharmacology, Brain Institute, Research Center of Neurology

Russian Federation, Moscow

Vladimir S. Sukhorukov

Research Center of Neurology; Pirogov Russian National Research Medical University

Email: sukhorukov@neurology.ru
ORCID iD: 0000-0002-0552-6939

D. Sci. (Med.), Head, Laboratory of neuromorphology, Brain Institute, Research Center of Neurology; Professor, Department of histology, embryology and cytology, Pirogov Russian National Research Medical University

Russian Federation, Moscow; Moscow

References

  1. Janmohamed M., Brodie M.J., Kwan P. Pharmacoresistance — epidemio- logy, mechanisms, and impact on epilepsy treatment. Neuropharmacology. 2020;168:107790. doi: 10.1016/j.neuropharm.2019.107790
  2. Sumadewi K.T., Harkitasari S., Tjandra D.C. Biomolecular mechanisms of epileptic seizures and epilepsy: a review. Acta Epileptol. 2023;5(28). doi: 10.1186/s42494-023-00137-0
  3. Копачев Д.Н., Шишкина Л.В., Быченко В.Г. и др. Склероз гиппокампа: патогенез, клиника, диагностика, лечение. Вопросы нейрохирургии им. Н.Н. Бурденко. 2016;80(4):109–116. doi: 10.17116/neiro2016804109-116
  4. Blümcke I., Thom M., Aronica E. et al. International consensus classification of hippocampal sclerosis in temporal lobe epilepsy: a Task Force report from the ILAE Commission on Diagnostic Methods. Epilepsia. 2013;54(7):1315–1329. doi: 10.1111/epi.12220.
  5. Tai X.Y., Bernhardt B., Thom M. et al. Review: neurodegenerative processes in temporal lobe epilepsy with hippocampal sclerosis: clinical, pathological and neuroimaging evidence. Neuropathol. Appl. Neurobiol. 2018;44(1):70–90. doi: 10.1111/nan.12458
  6. Verkhratsky A., Parpura V., Vardjan N., Zorec R. Physiology of astroglia. Adv. Exp. Med. Biol. 2019;1175:45–91. doi: 10.1007/978-981-13-9913-8_3
  7. Binder D.K., Steinhäuser C. Astrocytes and epilepsy. Neurochem. Res. 2021;46(10):2687–2695. doi: 10.1007/s11064-021-03236-x
  8. Johnson A.M., Sugo E., Barreto D. et al. The severity of gliosis in hippocampal sclerosis correlates with pre-operative seizure burden and outcome after temporal lobectomy. Mol. Neurobiol. 2016;53(8):5446–5456. doi: 10.1007/s12035-015-9465-y
  9. Grote A., Heiland D.H., Taube J. et al. 'Hippocampal innate inflammatory gliosis only' in pharmacoresistant temporal lobe epilepsy. Brain. 2023;146(2):549–560. doi: 10.1093/brain/awac293
  10. Twible C., Abdo R., Zhang Q. Astrocyte role in temporal lobe epilepsy and development of mossy fiber sprouting. Front. Cell Neurosci. 2021;15:725693. doi: 10.3389/fncel.2021.725693
  11. Falcón-Moya R., Sihra T.S., Rodríguez-Moreno A. Kainate receptors: role in epilepsy. Front. Mol. Neurosci. 2018;11:217. doi: 10.3389/fnmol.2018.00217
  12. Горина Я.В., Салмина А.Б., Ерофеев А.И. и др. Маркеры активации астроцитов. Биохимия. 2022;87(7):975-998. doi: 10.31857/S0320972522070119
  13. Huang X., Su Y., Wang N. et al. Astroglial connexins in neurodegenerative diseases. Front. Mol. Neurosci. 2021;14:657514. doi: 10.3389/fnmol.2021.657514
  14. Хаспеков Л.Г., Фрумкина Л.Е. Молекулярные механизмы, опосредующие участие глиальных клеток в пластических перестройках головного мозга при эпилепсии обзор. Биохимия. 2017;82(3):528–541.
  15. Viana J.F., Machado J.L., Abreu D.S. et al. Astrocyte structural heterogeneity in the mouse hippocampus. Glia. 2023;71(7):1667–1682. doi: 10.1002/glia.24362
  16. Prabhakar P., Pielot R., Landgraf P. et al. Monitoring regional astrocyte diversity by cell type-specific proteomic labeling in vivo. Glia. 2023;71(3):682–703. doi: 10.1002/glia.24304
  17. Makarava N., Mychko O., Molesworth K. et al. Region-specific homeosta- tic identity of astrocytes is essential for defining their response to pathological insults. Cells. 2023;12(17):2172. doi: 10.3390/cells12172172
  18. Batiuk M.Y., Martirosyan A., Wahis J. et al. Identification of region-specific astrocyte subtypes at single cell resolution. Nat. Commun. 2020;11(1):1220. doi: 10.1038/s41467-019-14198-8
  19. Su Y., Zhou Y., Bennett M.L. et al. A single-cell transcriptome atlas of glial diversity in the human hippocampus across the postnatal lifespan. Cell Stem. Cell. 2022;29(11):1594.e8–1610.e8. Erratum in: Cell Stem. Cell. 2023;30(1):113. doi: 10.1016/j.stem.2022.09.010
  20. Cibelli A., Stout R., Timmermann A. et al. Cx43 carboxyl terminal domain determines AQP4 and Cx30 endfoot organization and blood brain barrier permeability. Sci. Rep. 2021;11(1):24334. doi: 10.1038/s41598-021-03694-x
  21. Зиматкин С.М., Климуть Т.В., Заерко А.В. Структурная организация формации гиппокампа крысы. Сибирский научный медицинский журнал. 2023;43(3):4–14. doi: 10.18699/SSMJ20230301
  22. Воронков Д.Н., Ставровская А.В., Потапов И.А. и др. Глиальная реакция на нейровоспалительной модели болезни Паркинсона. Бюллетень экспериментальной биологии и медицины. 2022;174(11):658–664. doi: 10.47056/0365-9615-2022-174-11-658-664
  23. Aguilar-Arredondo A., López-Hernández F., García-Velázquez L. et al. Behavior-associated neuronal activation after kainic acid-induced hippocampal neurotoxicity is modulated in time. Anat. Rec. (Hoboken). 2017;300(2):425–432. doi: 10.1002/ar.23513
  24. Bond A.M., Berg D.A., Lee S. et al. Differential timing and coordination of neurogenesis and astrogenesis in developing mouse hippocampal subregions. Brain Sci. 2020;10(12):909. doi: 10.3390/brainsci10120909
  25. Khakh B.S., Deneen B. The emerging nature of astrocyte diversity. Annu. Rev. Neurosci. 2019;42:187–207. doi: 10.1146/annurev-neuro-070918-050443
  26. Dieni S., Matsumoto T., Dekkers M. et al. BDNF and its pro-peptide are stored in presynaptic dense core vesicles in brain neurons. J. Cell Biol. 2012;196(6):775–788. doi: 10.1083/jcb.201201038
  27. Fernández-García S., Sancho-Balsells A., Longueville S. et al. Astrocytic BDNF and TrkB regulate severity and neuronal activity in mouse models of temporal lobe epilepsy. Cell Death Dis. 2020;11(6):411. doi: 10.1038/s41419-020-2615-9
  28. Albini M., Krawczun-Rygmaczewska A., Cesca F. Astrocytes and brain-derived neurotrophic factor (BDNF). Neurosci. Res. 2023;197:42–51. doi: 10.1016/j.neures.2023.02.001
  29. Hubbard J.A., Szu J.I., Yonan J.M., Binder D.K. Regulation of astrocyte glutamate transporter-1 (GLT1) and aquaporin-4 (AQP4) expression in a model of epilepsy. Exp. Neurol. 2016;283(Pt A):85–96. doi: 10.1016/j.expneurol.2016.05.003
  30. Lee T.S., Eid T., Mane S. et al. Aquaporin-4 is increased in the sclerotic hippocampus in human temporal lobe epilepsy. Acta Neuropathol. 2004;108(6):493–502. doi: 10.1007/s00401-004-0910-7
  31. Alvestad S., Hammer J., Hoddevik E.H. et al. Mislocalization of AQP4 precedes chronic seizures in the kainate model of temporal lobe epilepsy. Epilepsy Res. 2013;105(1–2):30–41. doi: 10.1016/j.eplepsyres.2013.01.006
  32. Szu J.I., Chaturvedi S., Patel D.D., Binder D.K. Aquaporin-4 dysregulation in a controlled cortical impact injury model of posttraumatic epilepsy. Neuroscience. 2020;428:140–153. doi: 10.1016/j.neuroscience.2019.12.006
  33. Wu N., Lu X.Q., Yan H.T. et al. Aquaporin 4 deficiency modulates morphine pharmacological actions. Neurosci. Lett. 2008;448(2):221–225. doi: 10.1016/j.neulet.2008.10.065
  34. Lan Y.L., Zou S., Chen J.J. et al. The neuroprotective effect of the association of aquaporin-4/glutamate transporter-1 against Alzheimer's disease. Neural. Plast. 2016;2016:4626593. doi: 10.1155/2016/4626593
  35. Gebreyesus H.H., Gebremichael T.G. The potential role of astrocytes in Parkinson's disease (PD). Med. Sci. (Basel). 2020;8(1):7. doi: 10.3390/medsci8010007
  36. Parkin G.M., Udawela M., Gibbons A., Dean B. Glutamate transporters, EAAT1 and EAAT2, are potentially important in the pathophysiology and treatment of schizophrenia and affective disorders. World J. Psychiatry. 2018;8(2):51–63. doi: 10.5498/wjp.v8.i2.51
  37. Todd A.C., Hardingham G.E. The regulation of astrocytic glutamate transporters in health and neurodegenerative diseases. Int. J. Mol. Sci. 2020;21(24):9607. doi: 10.3390/ijms21249607
  38. Bjørnsen L.P., Eid T., Holmseth S. et al. Changes in glial glutamate transporters in human epileptogenic hippocampus: inadequate explanation for high extracellular glutamate during seizures. Neurobiol. Dis. 2007;25(2):319–330. doi: 10.1016/j.nbd.2006.09.014
  39. Sarac S., Afzal S., Broholm H. et al. Excitatory amino acid transporters EAAT-1 and EAAT-2 in temporal lobe and hippocampus in intractable temporal lobe epilepsy. APMIS. 2009;117(4):291–301. doi: 10.1111/j.1600-0463.2009.02443.x
  40. Eid T., Lee T.W., Patrylo P., Zaveri H.P. Astrocytes and glutamine synthetase in epileptogenesis. J. Neurosci. Res. 2019;97(11):1345–1362. doi: 10.1002/jnr.24267
  41. Papageorgiou I.E., Gabriel S., Fetani A.F. et al. Redistribution of astrocytic glutamine synthetase in the hippocampus of chronic epileptic rats. Glia. 2011;59(11):1706–1718. doi: 10.1002/glia.21217
  42. Hayatdavoudi P., Hosseini M., Hajali V. et al. The role of astrocytes in epileptic disorders. Physiol. Rep. 2022;10(6):e15239. doi: 10.14814/phy2.15239
  43. Bedner P., Steinhäuser C. Role of impaired astrocyte gap junction coupling in epileptogenesis. Cells. 2023;12(12):1669. doi: 10.3390/cells12121669
  44. Philippot C., Griemsmann S., Jabs R. et al. Astrocytes and oligodendrocytes in the thalamus jointly maintain synaptic activity by supplying meta- bolites. Cell Rep. 2021;34(3):108642. doi: 10.1016/j.celrep.2020.108642
  45. Henneberger C. Does rapid and physiological astrocyte-neuron signalling amplify epileptic activity? J. Physiol. 2017;595(6):1917–1927. doi: 10.1113/JP271958
  46. Deshpande T., Li T., Herde M.K. et al. Subcellular reorganization and altered phosphorylation of the astrocytic gap junction protein connexin43 in human and experimental temporal lobe epilepsy. Glia. 2017;65(11):1809–1820. doi: 10.1002/glia.23196

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Administration of KA into the hyppocampus resulted in neuronal damage in the CA3 region and glia activation in the DG. A, detection of NeuN neuronal marker (stained with red), CA3, × 10; В, astrocyte activation, GFAP (stained with green), DG, × 20; С, microglia hypertrophy, IBA1 (stained with green), CA3, × 40; D, expression of vimentin (stained with green) by reactive astrocytes of the polymorphic layer of the hippocampus, × 20. CA3 pyr, pyramidal layer of CA3; DG pol, polymorphic layer, DG gr, granular layer, * damage area. Nuclei stained with DAPI (blue).

Download (1MB)
3. Fig. 2. Changes in expression and localization of astrocyte functional proteins in hippocampal CA3 layers after administration of KA. A, identification of GS localization (stained with green) and SF (stained with red) in hippocampus layers, × 10; В, EAAT1 detected, × 10; С, Cx43 detected (stained with green), nuclei further stained with DAPI (stained with blue), × 20; D, AQP4 detected, × 10. so, stratum oriens; pyr, stratum pyramidalis; sl, stratum lucidum; sr, stratum radiatum; slm, stratum lacunosum molecularis.

Download (2MB)
4. Fig. 3. Changes in immunofluorescent staining intensity for functional astrocyte proteins in CA3 of the hippocampus (CA3 total), stratum lucidum (CA3 sl), and the polymorphic layer of DG (DG pl) after administration of KA. А, EAAT1 glutamate transporter (GLAST); В, EAAT2 glutamate transporter (GLT-1); С, Cx43; D, GS; E, AQP4; F, GFAP. sham, sham-operated animals; ipsi, on damage side; contra, contralateral to damage side; *p < 0.05 compared with sham-operated animals; #p < 0.05 compared with damage side (ANOVA, Tukey’s post-hoc test).

Download (204KB)
5. Fig. 4. Changes in intracellular EAAT2 and GS location in astrocytes after KA administration. А, intense staining for EAAT2 glutamate transporter (green) in reactive astrocyte bodies of the polymorphic layer, × 40; B, GS detected (stained with green) and SF (stained with red) in the processes and bodies of reactive astrocytes (arrows) in stratum lucidum and cells without processes identified (line segments with a dot at the end), × 40. DG gr, granular layer; DG pol, polymorphic layer; sl, stratum lucidum; sr, stratum radiatum.

Download (1019KB)

Copyright (c) 2024 Voronkov D.N., Egorova A.V., Fedorova E.N., Stavrovskaya A.V., Potapov I.A., Pavlova A.K., Sukhorukov V.S.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies