Changes in Clinical and Network Functional Connectivity Parameters in Motor Networks and Cerebellum Based on Resting-State Functional Magnetic Resonance Imaging Data in Patients with Post-Stroke Hemiparesis Receiving Interactive Brain Stimulation Neurotherapy

Cover Page

Cite item

Abstract

Introduction. Interactive brain stimulation (IBS) neurotherapy is an advanced neurofeedback technology (NFB) that involves the organization of a feedback “target” based on signals recorded by functional magnetic resonance imaging (fMRI) and electroencephalography (EEG). The NFB allows patients to volitionally self-regulate their current brain activity and may therefore be a useful treatment option for diseases with altered activation and functional connectivity (FC) patterns.

Our objective was to assess the effects of IBS on the FC changes in motor networks and correlations between clinical and network parameters in patients with post-stroke hand paresis.

Materials and methods. Patients with a history of stroke < 2 months were randomized into a main group (n = 7) and a control group (n = 7). All the patients followed the stroke physical rehabilitation for 3 weeks. The main group received IBS training, where the patients learned to imagine movements of the paretic hand trying to amplify the fMRI signal from the primary motor cortex (M1) and the supplementary motor area (SMA) on the lesion side with simultaneous desynchronizing the μ- and β-2 EEG rhythms in the central leads. Clinical tests and MRI were performed prior to and immediately after the treatment. FC matrices were constructed using CONN software based on resting-state fMRI data.

Results. By the end of the training, M1–M1 functional connectivity in the control group weakened, while no changes were observed in the main group. The FC strength was positively correlated with the grip strength (ρ = 0.69; p < 0.01) and with the results of the Box and Blocks test (BBT score, ρ = 0.72; p < 0.01) and the Fugl-Meyer assessment for upper extremity (FM-UE score, ρ = 0.87; p < 0.005). Ipsilesional SMA connectivity with contralesional cerebellum weakened (p < 0.05 in the main group). Its strength was negatively correlated with the BBT and FM-UE scores (both tests ρ = –0.44; p < 0.05).

Conclusions. Volitional control of M1 and SMA activity in the lesion hemisphere during the post-stroke IBS training alters the architecture of the entire motor network affecting clinically significant FC types. We studied a possible mechanism of this technology and its potential use in treatment programs.

About the authors

Nadezhda A. Khrushcheva

Federal Research Center of Fundamental and Translation Medicine

Author for correspondence.
Email: khrunks@mail.ru
ORCID iD: 0000-0003-4657-2947

Cand. Sci. (Med.), senior researcher, Laboratory of clinical and experimental neurology, neurologist, Head, Neurological clinical department

Russian Federation, Novosibirsk

Konstantin V. Kalgin

Federal Research Center of Fundamental and Translation Medicine

Email: khrunks@mail.ru
ORCID iD: 0000-0002-1873-4454

Cand. Sci. (Phys.-Math.), doctor resident of the second year of study

Russian Federation, Novosibirsk

Andrey A. Savelov

International Tomography Center

Email: khrunks@mail.ru
ORCID iD: 0000-0002-5332-2607

Cand. Sci. (Phys.-Math.), senior researcher, MRI Technology Laboratory, Head, MR biophysics group

Russian Federation, Novosibirsk

Anastasia V. Shurunova

Novosibirsk State University

Email: khrunks@mail.ru
ORCID iD: 0009-0006-4866-6372

doctor resident

Russian Federation, Novosibirsk

Elena V. Predtechenskaya

Novosibirsk State University

Email: khrunks@mail.ru
ORCID iD: 0000-0003-3750-0634

D. Sci. (Med.), Professor, Department of neurology, Zelman Institute of Medicine and Psychology

Russian Federation, Novosibirsk

Mark B. Shtark

Federal Research Center of Fundamental and Translation Medicine

Email: khrunks@mail.ru
ORCID iD: 0000-0002-2326-4709

D. Sci. (Med.), Professor, Academician of the Russian Academy of Sciences, main researcher 

Russian Federation, Novosibirsk

References

  1. Alstott J., Breakspear M., Hagmann P. et al. Modeling the impact of lesions in the human brain. PLoS Сomput. Biol. 2009;5(6):e1000408. doi: 10.1371/journal.pcbi.1000408
  2. Van Meer M.P.A., Van Der Marel K., Wang K. et al. Recovery of sensorimotor function after experimental stroke correlates with restoration of resting-state interhemispheric functional connectivity. J. Neurosci. 2010;30(11):3964–3972. doi: 10.1523/JNEUROSCI.5709-09.2010
  3. Wang L., Yu C., Chen H. et al. Dynamic functional reorganization of the motor execution network after stroke. Brain. 2010;133(4):1224–1238. doi: 10.1093/brain/awq043
  4. Larivière S., Ward N.S., Boudrias M.H. Disrupted functional network integrity and flexibility after stroke: Relation to motor impairments. Neuroimage Clin. 2018;19:883–891. doi: 10.1016/j.nicl.2018.06.010
  5. van Assche M., Dirren E., Bourgeois A. et al. Periinfarct rewiring supports recovery after primary motor cortex stroke. J. Cereb. Blood Flow Metab. 2021;41(9):2174–2184. doi: 10.1177/0271678X211002968
  6. Veldema J., Nowak D.A. Gharabaghi A. Resting motor threshold in the course of hand motor recovery after stroke: a systematic review. J. Neuroеng. Rehabil. 2021;18(1):158. doi: 10.1186/s12984-021-00947-8
  7. Paul T., Wiemer V.M., Hensel L. et al. Interhemispheric structural connectivity underlies motor recovery after stroke. Ann. Neurol. 2023;94(4):785–797. doi: 10.1002/ana.26737
  8. Feigin V.L., Stark B.A., Johnson C.O. et al. Global, regional, and national burden of stroke and its risk factors, 1990–2019: а systematic analysis for the Global Burden of Disease Study 2019. Lancet Neurol. 2021;20(10):795–820. doi: 10.1016/S1474-4422(21)00252-0
  9. Каплан А.Я., Кочетова А.Г., Шишкин С.Л. и др. Экспериментально-теоретические основания и практические реализации технологии «интерфейс мозг–компьютер». Бюллетень сибирской медицины. 2013;12(2):21–29. Kaplan A.Ya., Kochetova A.G., Shishkin S.L. et al. Experimental and theoretical foundations and practical implementation of technology brain-computer interface. Bulletin of Siberian Medicine. 2013;12(2):21–29.
  10. Sulzer J., Haller S., Scharnowski F. et al. Real-time fMRI neurofeedback: progress and challenges. Neuroimage. 2013;76:386–399. doi: 10.1016/j.neuroimage.2013.03.033
  11. Wang T., Mantini D., Gillebert C.R. The potential of real-time fMRI neurofeedback for stroke rehabilitation: а systematic review. Cortex. 2018;107:148–165. doi: 10.1016/j.cortex.2017.09.006
  12. Paret C., Goldway N., Zich C. et al. Current progress in real-time functional magnetic resonance-based neurofeedback: methodological challenges and achievements. Neuroimage. 2019;202:116107. doi: 10.1016/j.neuroimage.2019.116107
  13. Munzert J., Lorey B., Zentgraf K. Cognitive motor processes: the role of motor imagery in the study of motor representations. Brain Res. Rev. 2009;60(2):306–326. doi: 10.1016/j.brainresrev.2008.12.024
  14. Evans J.R., Dellinger M.B., Russell H.L. (eds.). Neurofeedback: The First Fifty Years. N.Y.; 2019.
  15. Gauthier C.J., Fan A.P. BOLD signal physiology: models and applications. Neuroimage. 2019;187:116–127. doi: 10.1016/j.neuroimage.2018.03.018
  16. Sitaram R., Veit R., Stevens B. et al. Acquired control of ventral premotor cortex activity by feedback training: an exploratory real-time FMRI and TMS study. Neurorehabil. Neural. Repair. 2012;26(3):256–265. doi: 10.1177/1545968311418345
  17. Liew S.L., Rana M., Cornelsen S. et al. Improving motor corticothalamic communication after stroke using real-time fMRI connectivity-based neurofeedback. Neurorehabil. Neural. Repair. 2016;30(7):671–675. doi: 10.1177/1545968315619699
  18. Mehler D., Williams A.N., Whittaker J.R. et al. Graded fmri neurofeedback training of motor imagery in middle cerebral artery stroke patients: a preregistered proof-of-concept study. Front. Human Neurosci. 2020;14:226. doi: 10.3389/fnhum.2020.00226
  19. Штарк М.Б., Веревкин Е.Г., Козлова Л.И. и др. Синергичное фМРТ-ЭЭГ картирование головного мозга в режиме произвольного управления альфа-ритмом. Бюллетень экспериментальной биологии и медицины. 2014;158(11):594–599. Shtark M.B., Veryovkin E.G., Kozlova L.I. et al. Synergistic fMRI-EEG mapping of the brain in the mode of arbitrary control of the alpha rhythm. Bulletin of Experimental Biology and Medicine. 2014;158(11):594–599.
  20. Zotev V., Phillips R., Yuan H. et al. Self-regulation of human brain activity using simultaneous real-time fMRI and EEG neurofeedback. NeuroImage. 2014;85(Pt 3):985–995. doi: 10.1016/j.neuroimage.2013.04.126
  21. Mano M., Lécuyer A., Bannier E. et al. How to build a hybrid neurofeedback platform combining EEG and fMRI. Front. Neurosci. 2017;11:140. doi: 10.3389/fnins.2017.00140
  22. Савелов А.А., Штарк М.Б., Мельников М.Е. и др. Перспективы синхронной фМРТ-ЭЭГ-записи как основы интерактивной стимуляции мозга (на примере последствий инсульта). Бюллетень экспериментальной биологии и медицины. 2018;166(9):366–369. Savelov A.A., Shtark M.B., Mel’nikov M.Ye. et al. Prospects of synchronous fMRI-EEG recording as the basis for neurofeedback (exemplified on patient with stroke sequelae). Bulletin of Experimental Biology and Medicine. 2018;166(9):366–369.
  23. Савелов А.А., Хрущева Н.А., Калгин К.В. и др. Конструкция, место и клиническая эффективность технологии интерактивной терапии (стимуляции) мозга при цереброваскулярной патологии. Комплексные проблемы сердечно-сосудистых заболеваний. 2023;12(1):25–38. Savelov A.A., Khrushcheva N.A., Kalgin K.V. et al. Structure, place, and clinical efficacy of the interactive brain therapy (stimulation) technology in cerebrovascular diseases. Complex Issues of Cardiovascular Diseases. 2023;12(1):25–38. doi: 10.17802/2306-1278-2023-12-1-25-38
  24. Khruscheva N.A., Mel'nikov M.Y., Bezmaternykh D.D. et al. Interactive brain stimulation neurotherapy based on BOLD signal in stroke rehabilitation. NeuroRegulation. 2022;9(3):147–163. doi: 10.15540/nr.9.3.147
  25. Lioi G., Fleury M., Butet S. et al. Bimodal EEG-fMRI neurofeedback for stroke rehabilitation: a case report. Ann. Phys. Rehabil. Med. 2018;61:e482–e483. doi: 10.1016/j.rehab.2018.05.1127
  26. Безматерных Д.Д., Калгин К.В., Максимова П.Е. и др. Применение фМРТ и одновременного фМРТ-ЭЭГ нейробиоуправления в постинсультной моторной реабилитации. Бюллетень экспериментальной биологии и медицины. 2021;171(3):364–368. Bezmaternykh D.D., Kalgin K.V., Maximova P.Ye. et al. Application of fMRI and simultaneous fMRI-EEG neurofeedback in post-stroke motor rehabilitation. Bulletin of Experimental Biology and Medicine. 2021;171(3):364–368.
  27. Lioi G., Butet S., Fleury M. et al. A multi-target motor imagery training using bimodal EEG-fMRI neurofeedback: a pilot study in chronic stroke patients. Front. Human Neurosci. 2020;14:37. doi: 10.3389/fnhum.2020.00037
  28. Lioi G., Veliz A., Coloigner J. et al. The impact of neurofeedback on effective connectivity networks in chronic stroke patients: an exploratory study. J. Neural Eng. 2021;18(5):056052. doi: 10.1088/1741-2552/ac291e
  29. Савелов А.А., Штарк М.Б., Козлова, Л.И. и др. Динамика взаимосвязей церебральных сетей, построенных на основе фМРТ-данных, и моторная реабилитация при инсультах. Бюллетень экспериментальной биологии и медицины. 2018;166(9):376–381. Savelov A.A., Shtark M.B., Kozlova L.I. et al. Dynamics of interactions between cerebral networks derived from fMRI data and motor rehabilitation during stokes. Bulletin of Experimental Biology and Medicine. 2018;166(9):376–381.
  30. Супонева Н.А., Юсупова Д.Г., Зимин А.А. и др. Валидация русскоязычной версии шкалы Фугл-Мейера для оценки состояния пациентов с постинсультным парезом. Журнал неврологии и психиатрии им. С.С. Корсакова. Спецвыпуски. 2021;121(8-2):86–90. Suponeva N.A., Yusupova D.G., Zimin A.A. et al. Validation of the Russian version of the Fugl-Meyer Assessment of Physical Performance for assessment of patients with post-stroke paresis. Zhurnal Nevrologii i Psikhiatrii imeni S.S. Korsakova. 2021;121(8-2): 86–90. doi: 10.17116/jnevro202112108286
  31. Супонева Н.А., Юсупова Д.Г., Жирова Е.С. и др. Валидация модифицированной шкалы Рэнкина (the modified Rankin Scale, mRS) в России. Неврология, нейропсихиатрия, психосоматика. 2018;10(4):36–39. Suponeva N.A., Yusupova D.G., Zhirova E.S. et al. Validation of the modified Rankin Scale in Russia. Neurology, Neuropsychiatry, Psychosomatics. 2018;10(4): 36–39. doi: 10.14412/2074-2711-2018-4-36-39
  32. Malouin F., Richards C.L., Jackson P.L. et al. The Kinesthetic and Visual Imagery Questionnaire (KVIQ) for assessing motor imagery in persons with physical disabilities: a reliability and construct validity study. J. Neurol. Phys. Ther. 2007;31(1):20–29. doi: 10.1097/01.npt.0000260567.24122.64
  33. Biswal B., Zerrin Yetkin F., Haughton V.M., Hyde J.S. Functional connecti- vity in the motor cortex of resting human brain using echo‐planar MRI. Magn. Reson. Med. 1995;34(4):537–541. doi: 10.1002/mrm.1910340409
  34. Carter A.R. Astafiev S.V., Lang C.E. et al. Resting interhemispheric functional magnetic resonance imaging connectivity predicts performance after stroke. Ann. Neurol. 2010;67(3):365–375. doi: 10.1002/ana.21905
  35. Baldassarre A., Ramsey L.E., Siegel J.S. et al. Brain connectivity and neurological disorders after stroke. Curr. Opin. Neurol. 2016;29(6):706–713. doi: 10.1097/WCO.0000000000000396
  36. Imamizu H., Miyauchi S., Tamada T. et al. Human cerebellar activity reflecting an acquired internal model of a new tool. Nature. 2000;403:192–195. doi: 10.1038/35003194
  37. Nijboer T.C.W., Buma F.E., Winters C. et al. No changes in functional connectivity during motor recovery beyond 5 weeks after stroke: a longitudinal resting-state fMRI study. PloS One. 2017;12(6):e0178017. doi: 10.1371/journal.pone.0178017
  38. Branscheidt M., Ejaz N., Xu J. et al. No evidence for motor-recovery-related cortical connectivity changes after stroke using resting-state fMRI. J. Neurophysiol. 2022;127(3):637–650. doi: 10.1152/jn.00148.2021
  39. Sanders Z.B., Fleming M.K., Smejka T. et al. Self-modulation of motor cortex activity after stroke: a randomized controlled trial. Brain. 2022;145(10):3391–3404. doi: 10.1093/brain/awac239

Supplementary files

Supplementary Files
Action
1. JATS XML
2. FC matrices of motor networks in the main and the control groups prior to and after the treatment. The white circles designate the regions of interest, the colored lines indicate their connections. The rose lines represent interhemispheric cross-lateral connections, the orange lines represent interhemispheric diagonal connections, and the blue lines represent intrahemispheric connections. The strength of the functional connections is proportional to the width of the lines, with weaker connections indicated by dotted lines. The correlation coefficient (ρ) is shown above the lines. The results of FC comparison before and after the treatment are presented on the right and on the lower panels, within and between the groups, respectively. Digits in white above each matrix reflect the mean value of the intranetwork connectivity or the difference in its level within or between the groups: on the right and on the lower panels, respectively. The confidence interval of 0.95 for this mean value is shown in the brackets. *p < 0.05 (using Student's t-test).

Download (2MB)

Copyright (c) 2024 Khrushcheva N.A., Kalgin K.V., Savelov A.A., Shurunova A.V., Predtechenskaya E.V., Shtark M.B.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies