Phenotypic features of a Russian family with spinocerebellar ataxia type 6 from Khabarovsk Krai

Cover Page

Cite item

Full Text

Abstract

The article presents a familial case of spinocerebellar ataxia type 6, consisting of 7 people across 4 generations from a mixed marriage of Yakut, Even, and Russian ethnicities, living in Khabarovsk Krai. The mutant allele of the CACNA1A gene had 27 stable CAG repeats in all patients (normal is <18 CAG repeats), while the normal allele had 13 CAG repeats. Clinical features included rapidly progressing cerebellar ataxia in males (0.96–9.00 points per year on the SARA scale); presence of psychological disorders in the form of alcoholism, early-onset binge drinking, completed suicidal behaviors; life expectancy reduced in 2 patients to 27 and 36 years.

 

About the authors

Tatyana N. Proskokova

Far-Eastern State Medical University

Author for correspondence.
Email: proskokova2011@yandex.ru
Russian Federation, Khabarovsk

Dmitry V. I.

Far-Eastern State Medical University

Email: proskokova2011@yandex.ru
Russian Federation, Khabarovsk

Natal’ya B. Serdyuk

Far-Eastern State Medical University

Email: proskokova2011@yandex.ru
Russian Federation, Khabarovsk

Natal’ya Yu. Abramycheva

Research Center of Neurology

Email: proskokova2011@yandex.ru
Russian Federation, Moscow

References

  1. Casey H.L., Gomez C.M. Spinocerebellar ataxia type 6. Gene Reviews. Seattle, 1998. PMID: 20301319.
  2. Guinti P., Mantuano E., Frontali M. et al. Molecular mechanism of spinocerebellar ataxia type 6: glutamine repeat disorder, channelopathy and transcriptional dysregulation. The multifaceted aspects of a single mutation. Front Cell Neurosci. 2015; 9: 36. doi: 10.3389/fncel. 2015.00036. PMID: 25762895.
  3. Coarelli G., Brice A., Durr A. Recent advances in understanding dominant spinocerebellar ataxias from clinical and genetic points of view. F100 Res. 2018; 7: F1000FacultyRev-1781. doi: 10.12688/f1000research.15788.1. PMID: 30473770.
  4. Wiethoff S., O’Connor E., Haridy N.A. et al. Sequencing analysis of the SCA6 CAG expansion excludes an influence of repeat interruptions on disease onset. J Neurol Neurosurg Psychiatry. 2018; 89(11): 1226–1227. doi: 10.1136/jnnp-2017-317253. PMID: 29367260.
  5. Bavassano C., Eigentlera A., Stanika R. et al. Bicistronic CACNA1A gene expression in neurons derived from spinocerebellar ataxia type 6 patients-induced pluripotent stem cells. Stem Cells Dev. 2017; 26(22): 1612–1625. doi: 10.1089/scd.2017.0085. PMID: 28946818.
  6. Paulson H.L., Shakkottai V.G., Clark H.B., Orr H.T. Polyglutamine spinocerebellar ataxias — from genes to potential treatmens. Nat Rev Neurosci. 2017; 18(10): 613–626. doi: 10.1038/nm.2017.92. PMID: 28855740.
  7. Sakakibara R., Tateno F., Kishi M. et al. Genetic screening for spinocerebellar ataxia genes in a Japanese single hospital cohort. J Mov Disord. 2017; 10(3): 116–122. doi: 10.14802/jmd.170.11. PMID: 28782341.
  8. Solodkin A., Gomez C.M. Spinocerebellar ataxia type 6. Handb Clin Neurol. 2012; 103: 461–473. doi: 10.1016/B978-0-444-51892-7.00029-2. PMID: 21827907.
  9. Soga K., Ishikawa K., Furuya T. et al. Gene dosage effect in spinocerebellar ataxia type 6 homozygotes: a clinical and neuropathological study. J Neurol. Sci. 2017; 15(373): 321–328. doi: 10.1016/j.jns.2016.12.051. PMID: 28131213.
  10. Takahashi H., Ishikawa K., Tsutsumi T. et al. A clinical and genetic study in a large cohort of patients with spinocerebellar ataxia type 6. J Hum Genet. 2004; 49: 256–264. doi: 10.1007/s10038-004-0142-7. PMID: 15362569
  11. Kuo P.H., Gan S.R., Wang J. et al. Dystonia and ataxia progression in spinocerebellar ataxias. Parkinsonism Relat. Disord. 2017; 45: 75–80. doi: 10.1016/j.parkreldis.2017.10.1007. PMID: 29089256.
  12. Chen S.J., Lee N.C., Chien Y.H. et al. Heterogeneous nonataxic patients of spinocerebellar ataxia in Taiwanese population. Brain Behav. 2019; 9(10): e01444. doi: 10.1002/brb3.1414. PMID: 31523939.
  13. Lay R.Y., Tomishon D., Figueroa K.P. et al. Tremor in the degenerative cerebellum: towards the understanding of brain circuity for tremor. Cerebellum. 2019; 18(3): 519–526. doi: 10.1007/s12311-019-01016-6. PMID: 30830673.
  14. Schols L., Linnemann C., Globas C. Electrophysiology in spinocerebellar ataxias: spread of disease and characteristic findings. Cerebellum. 2008; 7: 198–203. doi: 10.1007/s12311-008-0024-1. PMID: 18418678.
  15. Yun J.Y., Kim J.M., Kim H.J. et al. SCA6 presenting with young-onset parkinsonism without ataxia. Mov Disord. 2012; 27(8): 1067–1068. doi: 10.1002/mds.241077. PMID: 22605520.
  16. Takeshima S., Takeda I., Kobatake K. et al. SCA6 presenting parkinsonism without ataxia — a case report. Rinsho Shinkeigaku. 2015; 55(4): 243–247. doi: 10.5692/clinicalneurol.55.243. PMID: 25904253.
  17. Globas C., du Montcel S. T., Balik et al. Early symptoms spinocerebellar ataxias type 1, 2, 3 and 6. Mov Disord. 2008; 23: 2232–2238. doi: 10.1002/mds.22288. PMID: 18759344.
  18. Pereira L., Airan R.D., Fishman A. et al. Resting-state functional connectivity and cognitive dysfunction correlations in spinocerebellar ataxia type 6 (SCA6). Hum Brain Mapp. 2017; 38(6): 3001–3010. doi: 10.1002/hbm.23568. PMID: 28295805.
  19. Tamura L., Takei A., Hamada S. et al. Cognitive dysfunction in patients with spinocerebellar ataxia type 6. J Neurol. 2017; 264(2): 260–267. doi: 10.1007/900415-016-8344-4. PMID: 27878440.
  20. Indelicato E., Nachbauer W., Karner E. et al. The neuropsychiatric phenotype in CACNA1A mutations: a retrospectivesingle center study and review of the literature. Eur J Neurol. 2019; 26(1): 66–67. doi: 10.1111/ene.13765. PMID: 30063100.
  21. Craig K., Takiyama Y., Soong B. W. et al. Pathogenic expansions of the SCA6 locus are associated with a common CACNA1A haplotype across the globe: founder effect or predisposing chromosome? Eur J Hum Genet. 2008; 16: 841–847. doi: 10.1038/ejhg.2008.20. PMID: 18285829.
  22. Novikova L.V. [Clinical and genetic analysis of type 6 spinocerebellar ataxia: dis. ... Cand. med. sci.]. Moscow, 2002.S. 108.
  23. Mingarova E.Z. [Clinical-epidemiological and molecular-genetic study of progressive spinocerebellar ataxias in the Republic of Bashkortostan: dis. ... Cand. med. sci.]. Moscow, 2009.S. 171.
  24. Pastor P.D.H., Du X., Fazal S., Davies A.N. Targeting the CACNA1A IRES as a treatment for spinocerebellar ataxia type 6. Cerebellum. 2018; 17(1): 72–77. doi: 10.1007/s12311-018-0917-6. PMID: 29374372.
  25. Govek E.E., Hatten M.E. Tag-team genetics of spinocerebellar ataxia type 6. Neuron. 2019; 102: 707–709. doi: 10.1016/j.neuron.2019.04.041. PMID: 31121118.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2021 Proskokova T.N., I. D.V., Serdyuk N.B., Abramycheva N.Y.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».