Metaplasticity and non-invasive brain stimulation: the search for new biomarkers and directions for therapeutic neuromodulation

Cover Page

Cite item

Full Text

Abstract

Metaplasticity (plasticity of synaptic plasticity) is defined as a change in the direction or degree of synaptic plasticity in response to preceding neuronal activity. Recent advances in brain stimulation methods have enabled us to non-invasively examine cortical metaplasticity, including research in a clinical setting. According to current knowledge, non-invasive neuromodulation affects synaptic plasticity by inducing cortical processes that are similar to long-term potentiation and depression. Two stimulation blocks are usually used to assess metaplasticity — priming and testing blocks. The technology of studying metaplasticity involves assessing the influence of priming on the testing protocol effect.

Several dozen studies have examined the effects of different stimulation protocols in healthy persons. They found that priming can both enhance and weaken, or even change the direction of the testing protocol effect. The interaction between priming and testing stimulation depends on many factors: the direction of their effect, duration of the stimulation blocks, and the interval between them.

Non-invasive brain stimulation can be used to assess aberrant metaplasticity in nervous system diseases, in order to develop new biomarkers. Metaplasticity disorders are found in focal hand dystonia, migraine with aura, multiple sclerosis, chronic disorders of consciousness, and age-related cognitive changes.

The development of new, metaplasticity-based, optimized, combined stimulation protocols appears to be highly promising for use in therapeutic neuromodulation in clinical practice.

About the authors

Ilya S. Bakulin

Research Center of Neurology

Author for correspondence.
Email: bakulinilya@gmail.com
ORCID iD: 0000-0003-0716-3737

Cand. Sci. (Med.), researcher, Head, Non-invasive neuromo- dulation group, Institute of Neurorehabilitation

Russian Federation, Moscow

Alexandra G. Poydasheva

Research Center of Neurology

Email: alexandra.poydasheva@gmail.com
ORCID iD: 0000-0003-1841-1177

junior researcher, Non-invasive neuromodulation group, Institute of Neurorehabilitation

Russian Federation, Moscow

Alfiia H. Zabirova

Research Center of Neurology

Email: alfijasabirowa@gmail.com
ORCID iD: 0000-0001-8544-3107

postgraduate student, neurologist

Russian Federation, Moscow

Natalia A. Suponeva

Research Center of Neurology

Email: nasu2709@mail.ru
ORCID iD: 0000-0003-3956-6362

D. Sci. (Med.), Corresponding Member of RAS, Director, Institute of Neurorehabilitation

Russian Federation, Moscow

Michael A. Piradov

Research Center of Neurology

Email: Mpi711@gmail.com
ORCID iD: 0000-0002-6338-0392

D. Sci. (Med.), Professor, Academician of RAS, Director

Russian Federation, Moscow

References

  1. Пирадов М.А., Черникова Л.А., Супонева Н.А. Пластичность мозга и современные технологии нейрореабилитации. Вестник РАН. 2018; 88(4): 299–312. Piradov M.A., Chernikova L.A., Suponeva N.A. Brain plasticity and mo-dern neurorehabilitation technologies. Vestnik RAN. 2018; 88(4): 299–312. (In Russ.) doi: 10.7868/S0869587318040023
  2. Sweatt J.D. Neural plasticity and behavior — sixty years of conceptual advan- ces. J. Neurochem. 2016; 139(Suppl 2): 179–199. doi: 10.1111/jnc.13580
  3. Magee J.C., Grienberger C. Synaptic plasticity forms and functions. Annu. Rev. Neurosci. 2020; 43: 95–117. doi: 10.1146/annurev-neuro-090919-022842
  4. Bonfanti L., Charvet C.J. Brain plasticity in humans and model systems: advances, challenges, and future directions. Int. J. Mol. Sci. 2021; 22(17): 9358. doi: 10.3390/ijms22179358
  5. Diering G.H., Huganir R.L. The AMPA receptor code of synaptic plasticity. Neuron. 2018; 100(2): 314–329. doi: 10.1016/j.neuron.2018.10.018
  6. Cheyne J.E., Montgomery J.M. The cellular and molecular basis of in vivo synaptic plasticity in rodents. Am. J. Physiol. Cell Physiol. 2020; 318(6): C1264–C1283. doi: 10.1152/ajpcell.00416.2019
  7. Abraham W.C., Bear M.F. Metaplasticity: the plasticity of synaptic plasticity. Trends Neurosci. 1996; 19(4): 126–130. doi: 10.1016/s0166-2236(96)80018-x
  8. Abraham W.C. Metaplasticity: tuning synapses and networks for plasticity. Nat. Rev. Neurosci. 2008; 9(5): 387. doi: 10.1038/nrn2356
  9. Bliss T.V., Lomo T. Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J. Physiol. 1973; 232(2): 331–356. doi: 10.1113/jphysiol.1973.sp010273
  10. Ito M. Long-term depression. Annu. Rev. Neurosci. 1989; 12: 85–102. doi: 10.1146/annurev.ne.12.030189.000505
  11. Bolshakov V.Y., Siegelbaum S.A. Postsynaptic induction and presynaptic expression of hippocampal long-term depression. Science. 1994; 264(5162): 1148–1152. doi: 10.1126/science.7909958
  12. Linden D.J., Connor J.A. Long-term synaptic depression. Annu. Rev. Neurosci. 1995; 18: 319–357. doi: 10.1146/annurev.ne.18.030195.001535
  13. Гуляева Н.В. Молекулярные механизмы нейропластичности: расширяющаяся вселенная. Биохимия. 2017; 82(3): 365–371. Gulyaeva N.V. Molecular mechanisms of neuroplasticity: an expanding universe. Biokhimiya. 2017; 82(3): 365–371. (In Russ.)
  14. Brown R.E., Donald O. Hebb and the Organization of behavior: 17 years in the writing. Mol. Brain. 2020; 13(1): 55. doi: 10.1186/s13041-020-00567-8
  15. Turrigiano G. Homeostatic synaptic plasticity: local and global mechanisms for stabilizing neuronal function. Cold Spring Harb. Perspect. Biol. 2012; 4(1): a005736. doi: 10.1101/cshperspect.a005736
  16. Fernandes D., Carvalho A.L. Mechanisms of homeostatic plasticity in the excitatory synapse. J. Neurochem. 2016; 139(6): 973–996. doi: 10.1111/jnc.13687
  17. Vose L., Stanton P. Synaptic plasticity, metaplasticity and depression. Curr. Neuropharmacol. 2016; 15(1): 71–86. doi: 10.2174/1570159x14666160202121111
  18. Delvendahl I., Müller M. Homeostatic plasticity-a presynaptic perspective. Curr. Opin. Neurobiol. 2019; 54: 155–162. doi: 10.1016/j.conb.2018.10.003
  19. Coan E.J., Irving A.J., Collingridge G.L. Low-frequency activation of the NMDA receptor system can prevent the induction of LTP. Neurosci. Lett. 1989; 105(1-2): 205–10. doi: 10.1016/0304-3940(89)90038-4
  20. Huang Y.Y., Colino A., Selig D.K., Malenka R.C. The influence of prior synaptic activity on the induction of long-term potentiation. Science. 1992; 255(5045): 730–733. doi: 10.1126/science.1346729
  21. Larkman A., Hannay T., Stratford K., Jack J. Presynaptic release probability influences the locus of long-term potentiation. Nature. 1992; 360(6399): 70–73. doi: 10.1038/360070a0
  22. O’Dell T.J., Kandel E.R. Low-frequency stimulation erases LTP through an NMDA receptor-mediated activation of protein phosphatases. Learn. Mem. 1994; 1(2): 129–139.
  23. Müller-Dahlhaus F., Ziemann U. Metaplasticity in human cortex. Neuroscientist. 2015; 21(2): 185–202. doi: 10.1177/1073858414526645
  24. Yger P., Gilson M. Models of metaplasticity: a review of concepts. Front. Comput. Neurosci. 2015; 9: 138. doi: 10.3389/fncom.2015.00138
  25. Thomson A.C., Sack A.T. How to design optimal accelerated rTMS protocols capable of promoting therapeutically beneficial metaplasticity. Front. Neurol. 2020; 11: 599918. doi: 10.3389/fneur.2020.599918
  26. Hulme S.R., Jones O.D., Abraham W.C. Emerging roles of metaplasticity in behaviour and disease. Trends Neurosci. 2013; 36(6): 353–362. doi: 10.1016/j.tins.2013.03.007
  27. Bienenstock E.L., Cooper L.N., Munro P.W. Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex. J. Neurosci. 1982; 2(1): 32–48. doi: 10.1523/JNEUROSCI.02-01-00032.1982
  28. Jedlicka P. Synaptic plasticity, metaplasticity and BCM theory. Bratisl. Lek. Listy. 2002; 103(4–5): 137–143.
  29. Li J., Park E., Zhong L.R., Chen L. Homeostatic synaptic plasticity as a metaplasticity mechanism - a molecular and cellular perspective. Curr. Opin. Neurobiol. 2019; 54: 44–53. doi: 10.1016/j.conb.2018.08.010
  30. Hurley R., Machado L. Using tDCS priming to improve brain function: can metaplasticity provide the key to boosting outcomes? Neurosci. Biobehav. Rev. 2017; 83: 155–159. doi: 10.1016/j.neubiorev.2017.09.029
  31. Hassanzahraee M., Zoghi M., Jaberzadeh S. How different priming stimulations affect the corticospinal excitability induced by noninvasive brain stimulation techniques: a systematic review and meta-analysis. Rev. Neurosci. 2018; 29(8): 883–899. doi: 10.1515/revneuro-2017-0111
  32. Cantone M., Lanza G., Ranieri F. et al. Editorial: non-invasive brain stimulation in the study and modulation of metaplasticity in neurological disorders. Front. Neurol. 2021; 12: 721906. doi: 10.3389/fneur.2021.721906
  33. Chervyakov A.V., Chernyavsky A.Y., Sinitsyn D.O., Piradov M.A. Possible mechanisms underlying the therapeutic effects of transcranial magnetic stimulation. Front. Hum. Neurosci. 2015; 9: 303. doi: 10.3389/fnhum.2015.00303
  34. Valero-Cabré A., Amengual J.L., Stengel C. et al. Transcranial magnetic stimulation in basic and clinical neuroscience: a comprehensive review of fundamental principles and novel insights. Neurosci. Biobehav. Rev. 2017; 83: 381–404. doi: 10.1016/j.neubiorev.2017.10.006
  35. Burke M.J., Fried P.J., Pascual-Leone A. Transcranial magnetic stimulation: Neurophysiological and clinical applications. Handb. Clin. Neurol. 2019; 163: 73–92. doi: 10.1016/B978-0-12-804281-6.00005-7
  36. Larson J., Munkácsy E. Theta-burst LTP. Brain Res. 2015; 1621: 38–50. doi: 10.1016/j.brainres.2014.10.034
  37. Suppa A., Huang Y.Z., Funke K. et al. Ten years of theta burst stimulation in humans: established knowledge, unknowns and prospects. Brain Stimul. 2016; 9(3): 323–335. doi: 10.1016/j.brs.2016.01.006
  38. Huang Y.Z., Edwards M.J., Rounis E. et al. Theta burst stimulation of the human motor cortex. Neuron. 2005; 45(2): 201–206. doi: 10.1016/j.neuron.2004.12.033
  39. Rounis E., Huang Y.Z. Theta burst stimulation in humans: a need for better understanding effects of brain stimulation in health and disease. Exp. Brain Res. 2020; 238(7-8): 1707–1714. doi: 10.1007/s00221-020-05880-1
  40. Wischnewski M., Schutter D.J. Efficacy and time course of theta burst sti- mulation in healthy humans. Brain Stimul. 2015; 8(4): 685–692. doi: 10.1016/j.brs.2015.03.004
  41. Classen J., Wolters A., Stefan K. et al. Paired associative stimulation. Suppl. Clin. Neurophysiol. 2004; 57: 563–569.
  42. Stagg C.J., Antal A., Nitsche M.A. Physiology of transcranial direct current stimulation. J. ECT. 2018; 34(3): 144–152. doi: 10.1097/YCT.0000000000000510
  43. Chase H.W., Boudewyn M.A., Carter C.S., Phillips M.L. Transcranial direct current stimulation: a roadmap for research, from mechanism of action to clinical implementation. Mol. Psychiatry. 2020; 25(2): 397–407. doi: 10.1038/s41380-019-0499-9
  44. Lang N., Siebner H.R., Ernst D. et al. Preconditioning with transcranial direct current stimulation sensitizes the motor cortex to rapid-rate transcranial magnetic stimulation and controls the direction of after-effects. Biol. Psychiatry. 2004; 56(9): 634–639. doi: 10.1016/j.biopsych.2004.07.017
  45. Cosentino G., Fierro B., Paladino P. et al. Transcranial direct current stimulation preconditioning modulates the effect of high-frequency repetitive transcranial magnetic stimulation in the human motor cortex. Eur. J. Neurosci. 2012; 35(1): 119–124. doi: 10.1111/j.1460-9568.2011.07939.x
  46. Siebner H.R., Lang N., Rizzo V. et al. Preconditioning of low-frequency repetitive transcranial magnetic stimulation with transcranial direct current stimulation: evidence for homeostatic plasticity in the human motor cortex. J. Neurosci. 2004; 24(13): 3379–85. doi: 10.1523/JNEUROSCI.5316-03.2004
  47. Todd G., Flavel S.C., Ridding M.C. Priming theta-burst repetitive transcranial magnetic stimulation with low- and high-frequency stimulation. Exp. Brain Res. 2009; 195(2): 307–315. doi: 10.1007/s00221-009-1791-8
  48. Gentner R., Wankerl K., Reinsberger C. et al. Depression of human corticospinal excitability induced by magnetic theta-burst stimulation: evidence of rapid polarity-reversing metaplasticity. Cereb Cortex. 2008; 18(9): 2046–2053. doi: 10.1093/cercor/bhm239
  49. Gamboa O.L., Antal A., Moliadze V., Paulus W. Simply longer is not better: reversal of theta burst after-effect with prolonged stimulation. Exp. Brain Res. 2010; 204(2): 181–187. doi: 10.1007/s00221-010-2293-4
  50. Tse N.Y., Goldsworthy M.R., Ridding M.C. et al. The effect of stimulation interval on plasticity following repeated blocks of intermittent theta burst stimulation. Sci. Rep. 2018; 8(1): 8526. doi: 10.1038/s41598-018-26791-w
  51. Gamboa O.L., Antal A., Laczo B. et al. Impact of repetitive theta burst stimulation on motor cortex excitability. Brain Stimul. 2011; 4(3): 145–151. doi: 10.1016/j.brs.2010.09.008
  52. Mastroeni C., Bergmann T.O., Rizzo V. et al. Brain-derived neurotrophic factor—a major player in stimulation-induced homeostatic metaplasticity of human motor cortex? PLoS One. 2013; 8(2): e57957. doi: 10.1371/journal.pone.0057957
  53. Opie G.M., Vosnakis E., Ridding M.C. et al. Priming theta burst stimulation enhances motor cortex plasticity in young but not old adults. Brain Stimul. 2017; 10(2): 298–304. doi: 10.1016/j.brs.2017.01.003
  54. Frey U., Schollmeier K., Reymann K.G., Seidenbecher T. Asymptotic hippocampal long-term potentiation in rats does not preclude additional potentiation at later phases. Neuroscience. 1995; 67(4): 799–807. doi: 10.1016/0306-4522(95)00117-2
  55. Kramár E.A., Babayan A.H., Gavin C.F. et al. Synaptic evidence for the efficacy of spaced learning. Proc. Natl. Acad. Sci. USA. 2012; 109(13): 5121–5126. doi: 10.1073/pnas.1120700109
  56. Cao G., Harris K.M. Augmenting saturated LTP by broadly spaced episodes of theta-burst stimulation in hippocampal area CA1 of adult rats and mice. J. Neurophysiol. 2014; 112(8): 1916–1924. doi: 10.1152/jn.00297.2014
  57. Bergmann T.O. Brain state-dependent brain stimulation. Front. Psychol. 2018; 9: 2108. doi: 10.3389/fpsyg.2018.02108
  58. Baur D., Galevska D., Hussain S. et al. Induction of LTD-like corticospinal plasticity by low-frequency rTMS depends on pre-stimulus phase of sensorimotor μ-rhythm. Brain Stimul. 2020; 13(6): 1580–1587. doi: 10.1016/j.brs.2020.09.005
  59. Guerra A., López-Alonso V., Cheeran B., Suppa A. Variability in non-invasive brain stimulation studies: Reasons and results. Neurosci. Lett. 2020; 719: 133330. doi: 10.1016/j.neulet.2017.12.058
  60. Ozdemir R.A., Boucher P., Fried P.J. et al. Reproducibility of cortical response modulation induced by intermittent and continuous theta-burst stimulation of the human motor cortex. Brain Stimul. 2021; 14(4): 949–964. doi: 10.1016/j.brs.2021.05.013
  61. Chervyakov A.V., Sinitsyn D.O., Piradov M.A. Variability of neuronal responses: types and functional significance in neuroplasticity and neural darwinism. Front. Hum. Neurosci. 2016; 10: 603. doi: 10.3389/fnhum.2016.00603
  62. Li S., Jin M., Koeglsperger T. et al. Soluble Aβ oligomers inhibit long-term potentiation through a mechanism involving excessive activation of extrasynaptic NR2B-containing NMDA receptors. J. Neurosci. 2011; 31(18): 6627–6638. doi: 10.1523/JNEUROSCI.0203-11.2011
  63. Rönicke R., Mikhaylova M., Rönicke S. et al. Early neuronal dysfunction by amyloid β oligomers depends on activation of NR2B-containing NMDA receptors. Neurobiol. Aging. 2011; 32(12): 2219–2228. doi: 10.1016/j.neurobiolaging.2010.01.011
  64. Balducci C., Tonini R., Zianni E. et al. Cognitive deficits associated with alteration of synaptic metaplasticity precede plaque deposition in AβPP23 transgenic mice. J. Alzheimers Dis. 2010; 21(4): 1367–1381. doi: 10.3233/jad-2010-100675
  65. Giordano N., Iemolo A., Mancini M. et al. Motor learning and metaplasticity in striatal neurons: relevance for Parkinson’s disease. Brain. 2018; 141(2): 505–520. doi: 10.1093/brain/awx351
  66. Chiamulera C., Piva A., Abraham W.C. Glutamate receptors and metaplasticity in addiction. Curr. Opin. Pharmacol. 2021; 56: 39–45. doi: 10.1016/j.coph.2020.09.005
  67. Quartarone A., Rizzo V., Bagnato S. et al. Homeostatic-like plasticity of the primary motor hand area is impaired in focal hand dystonia. Brain. 2005; 128 (Pt 8): 1943–1950. doi: 10.1093/brain/awh527
  68. Kang J.S., Terranova C., Hilker R. et al. Deficient homeostatic regulation of practice-dependent plasticity in writer’s cramp. Cereb. Cortex. 2011; 21(5): 1203–1212. doi: 10.1093/cercor/bhq204
  69. Antal A., Lang N., Boros K. et al. Homeostatic metaplasticity of the motor cortex is altered during headache-free intervals in migraine with aura. Cereb. Cortex. 2008; 18(11): 2701–2705. doi: 10.1093/cercor/bhn032
  70. Baione V., Belvisi D., Cortese A. et al. Cortical M1 plasticity and metaplasticity in patients with multiple sclerosis. Mult. Scler. Relat. Disord. 2020; 38: 101494. doi: 10.1016/j.msard.2019.101494
  71. Naro A., Bramanti A., Leo A. et al. Metaplasticity: a promising tool to disentangle chronic disorders of consciousness differential diagnosis. Int. J. Neural. Syst. 2018; 28(6): 1750059. doi: 10.1142/S0129065717500599
  72. Sundman M.H., Lim K., Ton That V. et al. Transcranial magnetic stimulation reveals diminished homoeostatic metaplasticity in cognitively impaired adults. Brain Commun. 2020; 2(2): fcaa203. doi: 10.1093/braincomms/fcaa203
  73. Бакулин И.С., Пойдашева А.Г., Лагода Д.Ю. и др. Перспективы развития терапевтической транскраниальной магнитной стимуляции. Нервные болезни. 2021; 4: 3–10. Bakulin I.S., Poydasheva A.G., Lagoda D.Yu. et al. Prospects for the development of therapeutic transcranial magnetic stimulation. Nervnye bolezni. 2021; 4: 3–10. (In Russ.) doi: 10.24412/2226-0757-2021-12371
  74. Hordacre B., Ridding M.C., Goldsworthy M.R. Response variability to non-invasive brain stimulation protocols. Clin. Neurophysiol. 2015; 126(12): 2249–2250. doi: 10.1016/j.clinph.2015.04.052
  75. Fitzgerald P.B., Hoy K., McQueen S. et al. Priming stimulation enhances the effectiveness of low-frequency right prefrontal cortex transcranial magnetic stimulation in major depression. J. Clin. Psychopharmacol. 2008; 28(1): 52–58. doi: 10.1097/jcp.0b013e3181603f7c
  76. Bolognini N., Pascual-Leone A., Fregni F. Using non-invasive brain stimulation to augment motor training-induced plasticity. J. Neuroeng. Rehabil. 2009; 6: 8. doi: 10.1186/1743-0003-6-8
  77. Cassidy J.M., Gillick B.T., Carey J.R. Priming the brain to capitalize on meta- plasticity in stroke rehabilitation. Phys. Ther. 2014; 94(1): 139–150. doi: 10.2522/ptj.20130027
  78. Takeuchi N, Izumi S. Combinations of stroke neurorehabilitation to facilitate motor recovery: perspectives on Hebbian plasticity and homeostatic metaplasticity. Front. Hum. Neurosci. 2015; 9: 349. doi: 10.3389/fnhum.2015.00349
  79. Kang N., Summers J.J., Cauraugh J.H. Transcranial direct current stimulation facilitates motor learning post-stroke: a systematic review and meta-analysis. J. Neurol. Neurosurg. Psychiatry. 2016; 87(4): 345–355. doi: 10.1136/jnnp-2015-311242
  80. Giacobbe V., Krebs H.I., Volpe B.T. et al. Transcranial direct current stimulation (tDCS) and robotic practice in chronic stroke: the dimension of timing. NeuroRehabilitation. 2013; 33(1): 49–56. doi: 10.3233/NRE-130927
  81. Cabral M.E., Baltar A., Borba R. et al. Transcranial direct current stimulation: before, during, or after motor training? Neuroreport. 2015; 26(11): 618–622. doi: 10.1097/WNR.0000000000000397
  82. Avenanti A., Coccia M., Ladavas E. et al. Low-frequency rTMS promotes use-dependent motor plasticity in chronic stroke: a randomized trial. Neurology. 2012; 78(4): 256–264. doi: 10.1212/WNL.0b013e3182436558
  83. Carey J.R., Deng H., Gillick B.T. et al. Serial treatments of primed low-frequency rTMS in stroke: characteristics of responders vs. nonresponders. Restor. Neurol. Neurosci. 2014; 32(2): 323–335. doi: 10.3233/RNN-130358
  84. Cassidy J.M., Chu H., Anderson D.C. et al. A comparison of primed low-frequency repetitive transcranial magnetic stimulation treatments in chronic stroke. Brain Stimul. 2015; 8(6): 1074–1084. doi: 10.1016/j.brs.2015.06.007
  85. Zhang J.J., Fong K.N.K. Effects of priming intermittent theta burst stimulation on upper limb motor recovery after stroke: study protocol for a proof-of-concept randomised controlled trial. BMJ Open. 2020; 10(3): e035348. doi: 10.1136/bmjopen-2019-035348
  86. Cheng I., Scarlett H., Zhang M., Hamdy S. Preconditioning human pharyngeal motor cortex enhances directional metaplasticity induced by repetitive transcranial magnetic stimulation. J. Physiol. 2020; 598(22): 5213–5230. doi: 10.1113/JP279977
  87. Sonmez A.I., Camsari D.D., Nandakumar A.L. et al. Accelerated TMS for Depression: A systematic review and meta-analysis. Psychiatry Res. 2019; 273: 770–781. doi: 10.1016/j.psychres.2018.12.041
  88. Cheng C.M., Li C.T., Tsai S.J. Current updates on newer forms of transcranial magnetic stimulation in major depression. Adv. Exp. Med. Biol. 2021; 1305: 333–349. doi: 10.1007/978-981-33-6044-0_18
  89. Cole E.J., Phillips A.L., Bentzley B.S. et al. Stanford Neuromodulation Therapy (SNT): a double-blind randomized controlled trial. Am. J. Psychiatry. 2022; 179(2):132–141. doi: 10.1176/appi.ajp.2021.20101429
  90. Baeken C., Vanderhasselt M.A., Remue J. et al. Intensive HF-rTMS treatment in refractory medication-resistant unipolar depressed patients. J. Affect. Disord. 2013; 151(2): 625–631. doi: 10.1016/j.jad.2013.07.008
  91. Duprat R., Desmyter S., Rudi de R. et al. Accelerated intermittent theta burst stimulation treatment in medication-resistant major depression: a fast road to remission? J. Affect. Disord. 2016; 200: 6–14. doi: 10.1016/j.jad.2016.04.015
  92. Desmyter S., Duprat R., Baeken C. et al. Accelerated intermittent theta burst stimulation for suicide risk in therapy-resistant depressed patients: a randomized, sham-controlled trial. Front. Hum. Neurosci. 2016; 10: 480. doi: 10.3389/fnhum.2016.00480
  93. Blumberger D.M., Vila-Rodriguez F., Wang W. et al. A randomized sham controlled comparison of once vs twice-daily intermittent theta burst stimulation in depression: A Canadian rTMS treatment and biomarker network in depression (CARTBIND) study. Brain Stimul. 2021; 14(6): 1447–1455. doi: 10.1016/j.brs.2021.09.003
  94. Fitzgerald P.B., Hoy K.E., Elliot D. et al. Accelerated repetitive transcranial magnetic stimulation in the treatment of depression. Neuropsychopharmacology. 2018; 43(7): 1565–1572. doi: 10.1038/s41386-018-0009-9
  95. Loo C.K., Mitchell P.B., McFarquhar T.F et al. A sham-controlled trial of the efficacy and safety of twice-daily rTMS in major depression. Psychol. Med. 2007; 37(3): 341–349. doi: 10.1017/S0033291706009597
  96. Cole E.J., Stimpson K.H., Bentzley B.S. et al. Stanford accelerated intelligent neuromodulation therapy for treatment-resistant depression. Am. J. Psychiatry. 2020; 177(8): 716–726. doi: 10.1176/appi.ajp.2019.19070720

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2022 Bakulin I.S., Poydasheva A.G., Zabirova A.H., Suponeva N.A., Piradov M.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies