Метапластичность и неинвазивная стимуляция мозга: поиск новых биомаркеров и направлений терапевтической нейромодуляции

Обложка

Цитировать

Полный текст

Аннотация

Метапластичность (пластичность синаптической пластичности) определяется как изменение направленности или выраженности синаптической пластичности в ответ на предшествующую нейрональную активность. Активное развитие в последние годы методов стимуляции мозга позволяет изучать метапластичность коры неинвазивно, в том числе в клинических условиях. Согласно современным представлениям, эффект неинвазивной нейромодуляции основан на её влиянии на синаптическую пластичность за счёт индукции в коре процессов, сходных с долговременной потенциацией и депрессией. Для оценки метапластичности обычно используются 2 блока стимуляции — прайминговый и тестовый. Суть технологии изучения метапластичности состоит в оценке влияния прайминга на эффект тестового протокола.

В нескольких десятках исследований изучены эффекты различных комбинаций протоколов стимуляции у здоровых лиц, при этом показано, что прайминг может как усиливать, так и ослаблять или даже менять направленность эффекта тестового протокола. Особенности взаимодействия прайминговой и тестовой стимуляции зависят от многих факторов: направленности их эффекта, продолжительности блоков стимуляции и интервала между ними.

Неинвазивная стимуляция мозга может использоваться для оценки аберрантной метапластичности при заболеваниях нервной системы с целью разработки новых биомаркеров. Нарушения метапластичности выявляются при писчем спазме, мигрени с аурой, рассеянном склерозе, хронических нарушениях сознания и возрастных когнитивных нарушениях.

Большие перспективы связаны с разработкой новых, основанных на метапластичности оптимизированных комбинированных протоколов стимуляции для использования терапевтической нейромодуляции в клинической практике.

Об авторах

Илья Сергеевич Бакулин

ФГБНУ «Научный центр неврологии»

Автор, ответственный за переписку.
Email: bakulinilya@gmail.com
ORCID iD: 0000-0003-0716-3737

к.м.н., н.с., рук. группы неинвазивной нейромодуляции Института нейрореабилитации и восстановительных технологий

Россия, Москва

Александра Георгиевна Пойдашева

ФГБНУ «Научный центр неврологии»

Email: alexandra.poydasheva@gmail.com
ORCID iD: 0000-0003-1841-1177

м.н.с. группы неинвазивной нейромодуляции Института нейрореабилитации и восстановительных технологий

Россия, Москва

Альфия Ходжаевна Забирова

ФГБНУ «Научный центр неврологии»

Email: alfijasabirowa@gmail.com
ORCID iD: 0000-0001-8544-3107

аспирант, врач-невролог

Россия, Москва

Наталья Александровна Супонева

ФГБНУ «Научный центр неврологии»

Email: nasu2709@mail.ru
ORCID iD: 0000-0003-3956-6362

д.м.н., профессор, член-корреспондент РАН, директор Института нейрореабилитации и восстановительных технологий

Россия, Москва

Михаил Александрович Пирадов

ФГБНУ «Научный центр неврологии»

Email: Mpi711@gmail.com
ORCID iD: 0000-0002-6338-0392

д.м.н., профессор, академик РАН, директор

Россия, Москва

Список литературы

  1. Пирадов М.А., Черникова Л.А., Супонева Н.А. Пластичность мозга и современные технологии нейрореабилитации. Вестник РАН. 2018; 88(4): 299–312. Piradov M.A., Chernikova L.A., Suponeva N.A. Brain plasticity and mo-dern neurorehabilitation technologies. Vestnik RAN. 2018; 88(4): 299–312. (In Russ.) doi: 10.7868/S0869587318040023
  2. Sweatt J.D. Neural plasticity and behavior — sixty years of conceptual advan- ces. J. Neurochem. 2016; 139(Suppl 2): 179–199. doi: 10.1111/jnc.13580
  3. Magee J.C., Grienberger C. Synaptic plasticity forms and functions. Annu. Rev. Neurosci. 2020; 43: 95–117. doi: 10.1146/annurev-neuro-090919-022842
  4. Bonfanti L., Charvet C.J. Brain plasticity in humans and model systems: advances, challenges, and future directions. Int. J. Mol. Sci. 2021; 22(17): 9358. doi: 10.3390/ijms22179358
  5. Diering G.H., Huganir R.L. The AMPA receptor code of synaptic plasticity. Neuron. 2018; 100(2): 314–329. doi: 10.1016/j.neuron.2018.10.018
  6. Cheyne J.E., Montgomery J.M. The cellular and molecular basis of in vivo synaptic plasticity in rodents. Am. J. Physiol. Cell Physiol. 2020; 318(6): C1264–C1283. doi: 10.1152/ajpcell.00416.2019
  7. Abraham W.C., Bear M.F. Metaplasticity: the plasticity of synaptic plasticity. Trends Neurosci. 1996; 19(4): 126–130. doi: 10.1016/s0166-2236(96)80018-x
  8. Abraham W.C. Metaplasticity: tuning synapses and networks for plasticity. Nat. Rev. Neurosci. 2008; 9(5): 387. doi: 10.1038/nrn2356
  9. Bliss T.V., Lomo T. Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J. Physiol. 1973; 232(2): 331–356. doi: 10.1113/jphysiol.1973.sp010273
  10. Ito M. Long-term depression. Annu. Rev. Neurosci. 1989; 12: 85–102. doi: 10.1146/annurev.ne.12.030189.000505
  11. Bolshakov V.Y., Siegelbaum S.A. Postsynaptic induction and presynaptic expression of hippocampal long-term depression. Science. 1994; 264(5162): 1148–1152. doi: 10.1126/science.7909958
  12. Linden D.J., Connor J.A. Long-term synaptic depression. Annu. Rev. Neurosci. 1995; 18: 319–357. doi: 10.1146/annurev.ne.18.030195.001535
  13. Гуляева Н.В. Молекулярные механизмы нейропластичности: расширяющаяся вселенная. Биохимия. 2017; 82(3): 365–371. Gulyaeva N.V. Molecular mechanisms of neuroplasticity: an expanding universe. Biokhimiya. 2017; 82(3): 365–371. (In Russ.)
  14. Brown R.E., Donald O. Hebb and the Organization of behavior: 17 years in the writing. Mol. Brain. 2020; 13(1): 55. doi: 10.1186/s13041-020-00567-8
  15. Turrigiano G. Homeostatic synaptic plasticity: local and global mechanisms for stabilizing neuronal function. Cold Spring Harb. Perspect. Biol. 2012; 4(1): a005736. doi: 10.1101/cshperspect.a005736
  16. Fernandes D., Carvalho A.L. Mechanisms of homeostatic plasticity in the excitatory synapse. J. Neurochem. 2016; 139(6): 973–996. doi: 10.1111/jnc.13687
  17. Vose L., Stanton P. Synaptic plasticity, metaplasticity and depression. Curr. Neuropharmacol. 2016; 15(1): 71–86. doi: 10.2174/1570159x14666160202121111
  18. Delvendahl I., Müller M. Homeostatic plasticity-a presynaptic perspective. Curr. Opin. Neurobiol. 2019; 54: 155–162. doi: 10.1016/j.conb.2018.10.003
  19. Coan E.J., Irving A.J., Collingridge G.L. Low-frequency activation of the NMDA receptor system can prevent the induction of LTP. Neurosci. Lett. 1989; 105(1-2): 205–10. doi: 10.1016/0304-3940(89)90038-4
  20. Huang Y.Y., Colino A., Selig D.K., Malenka R.C. The influence of prior synaptic activity on the induction of long-term potentiation. Science. 1992; 255(5045): 730–733. doi: 10.1126/science.1346729
  21. Larkman A., Hannay T., Stratford K., Jack J. Presynaptic release probability influences the locus of long-term potentiation. Nature. 1992; 360(6399): 70–73. doi: 10.1038/360070a0
  22. O’Dell T.J., Kandel E.R. Low-frequency stimulation erases LTP through an NMDA receptor-mediated activation of protein phosphatases. Learn. Mem. 1994; 1(2): 129–139.
  23. Müller-Dahlhaus F., Ziemann U. Metaplasticity in human cortex. Neuroscientist. 2015; 21(2): 185–202. doi: 10.1177/1073858414526645
  24. Yger P., Gilson M. Models of metaplasticity: a review of concepts. Front. Comput. Neurosci. 2015; 9: 138. doi: 10.3389/fncom.2015.00138
  25. Thomson A.C., Sack A.T. How to design optimal accelerated rTMS protocols capable of promoting therapeutically beneficial metaplasticity. Front. Neurol. 2020; 11: 599918. doi: 10.3389/fneur.2020.599918
  26. Hulme S.R., Jones O.D., Abraham W.C. Emerging roles of metaplasticity in behaviour and disease. Trends Neurosci. 2013; 36(6): 353–362. doi: 10.1016/j.tins.2013.03.007
  27. Bienenstock E.L., Cooper L.N., Munro P.W. Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex. J. Neurosci. 1982; 2(1): 32–48. doi: 10.1523/JNEUROSCI.02-01-00032.1982
  28. Jedlicka P. Synaptic plasticity, metaplasticity and BCM theory. Bratisl. Lek. Listy. 2002; 103(4–5): 137–143.
  29. Li J., Park E., Zhong L.R., Chen L. Homeostatic synaptic plasticity as a metaplasticity mechanism - a molecular and cellular perspective. Curr. Opin. Neurobiol. 2019; 54: 44–53. doi: 10.1016/j.conb.2018.08.010
  30. Hurley R., Machado L. Using tDCS priming to improve brain function: can metaplasticity provide the key to boosting outcomes? Neurosci. Biobehav. Rev. 2017; 83: 155–159. doi: 10.1016/j.neubiorev.2017.09.029
  31. Hassanzahraee M., Zoghi M., Jaberzadeh S. How different priming stimulations affect the corticospinal excitability induced by noninvasive brain stimulation techniques: a systematic review and meta-analysis. Rev. Neurosci. 2018; 29(8): 883–899. doi: 10.1515/revneuro-2017-0111
  32. Cantone M., Lanza G., Ranieri F. et al. Editorial: non-invasive brain stimulation in the study and modulation of metaplasticity in neurological disorders. Front. Neurol. 2021; 12: 721906. doi: 10.3389/fneur.2021.721906
  33. Chervyakov A.V., Chernyavsky A.Y., Sinitsyn D.O., Piradov M.A. Possible mechanisms underlying the therapeutic effects of transcranial magnetic stimulation. Front. Hum. Neurosci. 2015; 9: 303. doi: 10.3389/fnhum.2015.00303
  34. Valero-Cabré A., Amengual J.L., Stengel C. et al. Transcranial magnetic stimulation in basic and clinical neuroscience: a comprehensive review of fundamental principles and novel insights. Neurosci. Biobehav. Rev. 2017; 83: 381–404. doi: 10.1016/j.neubiorev.2017.10.006
  35. Burke M.J., Fried P.J., Pascual-Leone A. Transcranial magnetic stimulation: Neurophysiological and clinical applications. Handb. Clin. Neurol. 2019; 163: 73–92. doi: 10.1016/B978-0-12-804281-6.00005-7
  36. Larson J., Munkácsy E. Theta-burst LTP. Brain Res. 2015; 1621: 38–50. doi: 10.1016/j.brainres.2014.10.034
  37. Suppa A., Huang Y.Z., Funke K. et al. Ten years of theta burst stimulation in humans: established knowledge, unknowns and prospects. Brain Stimul. 2016; 9(3): 323–335. doi: 10.1016/j.brs.2016.01.006
  38. Huang Y.Z., Edwards M.J., Rounis E. et al. Theta burst stimulation of the human motor cortex. Neuron. 2005; 45(2): 201–206. doi: 10.1016/j.neuron.2004.12.033
  39. Rounis E., Huang Y.Z. Theta burst stimulation in humans: a need for better understanding effects of brain stimulation in health and disease. Exp. Brain Res. 2020; 238(7-8): 1707–1714. doi: 10.1007/s00221-020-05880-1
  40. Wischnewski M., Schutter D.J. Efficacy and time course of theta burst sti- mulation in healthy humans. Brain Stimul. 2015; 8(4): 685–692. doi: 10.1016/j.brs.2015.03.004
  41. Classen J., Wolters A., Stefan K. et al. Paired associative stimulation. Suppl. Clin. Neurophysiol. 2004; 57: 563–569.
  42. Stagg C.J., Antal A., Nitsche M.A. Physiology of transcranial direct current stimulation. J. ECT. 2018; 34(3): 144–152. doi: 10.1097/YCT.0000000000000510
  43. Chase H.W., Boudewyn M.A., Carter C.S., Phillips M.L. Transcranial direct current stimulation: a roadmap for research, from mechanism of action to clinical implementation. Mol. Psychiatry. 2020; 25(2): 397–407. doi: 10.1038/s41380-019-0499-9
  44. Lang N., Siebner H.R., Ernst D. et al. Preconditioning with transcranial direct current stimulation sensitizes the motor cortex to rapid-rate transcranial magnetic stimulation and controls the direction of after-effects. Biol. Psychiatry. 2004; 56(9): 634–639. doi: 10.1016/j.biopsych.2004.07.017
  45. Cosentino G., Fierro B., Paladino P. et al. Transcranial direct current stimulation preconditioning modulates the effect of high-frequency repetitive transcranial magnetic stimulation in the human motor cortex. Eur. J. Neurosci. 2012; 35(1): 119–124. doi: 10.1111/j.1460-9568.2011.07939.x
  46. Siebner H.R., Lang N., Rizzo V. et al. Preconditioning of low-frequency repetitive transcranial magnetic stimulation with transcranial direct current stimulation: evidence for homeostatic plasticity in the human motor cortex. J. Neurosci. 2004; 24(13): 3379–85. doi: 10.1523/JNEUROSCI.5316-03.2004
  47. Todd G., Flavel S.C., Ridding M.C. Priming theta-burst repetitive transcranial magnetic stimulation with low- and high-frequency stimulation. Exp. Brain Res. 2009; 195(2): 307–315. doi: 10.1007/s00221-009-1791-8
  48. Gentner R., Wankerl K., Reinsberger C. et al. Depression of human corticospinal excitability induced by magnetic theta-burst stimulation: evidence of rapid polarity-reversing metaplasticity. Cereb Cortex. 2008; 18(9): 2046–2053. doi: 10.1093/cercor/bhm239
  49. Gamboa O.L., Antal A., Moliadze V., Paulus W. Simply longer is not better: reversal of theta burst after-effect with prolonged stimulation. Exp. Brain Res. 2010; 204(2): 181–187. doi: 10.1007/s00221-010-2293-4
  50. Tse N.Y., Goldsworthy M.R., Ridding M.C. et al. The effect of stimulation interval on plasticity following repeated blocks of intermittent theta burst stimulation. Sci. Rep. 2018; 8(1): 8526. doi: 10.1038/s41598-018-26791-w
  51. Gamboa O.L., Antal A., Laczo B. et al. Impact of repetitive theta burst stimulation on motor cortex excitability. Brain Stimul. 2011; 4(3): 145–151. doi: 10.1016/j.brs.2010.09.008
  52. Mastroeni C., Bergmann T.O., Rizzo V. et al. Brain-derived neurotrophic factor—a major player in stimulation-induced homeostatic metaplasticity of human motor cortex? PLoS One. 2013; 8(2): e57957. doi: 10.1371/journal.pone.0057957
  53. Opie G.M., Vosnakis E., Ridding M.C. et al. Priming theta burst stimulation enhances motor cortex plasticity in young but not old adults. Brain Stimul. 2017; 10(2): 298–304. doi: 10.1016/j.brs.2017.01.003
  54. Frey U., Schollmeier K., Reymann K.G., Seidenbecher T. Asymptotic hippocampal long-term potentiation in rats does not preclude additional potentiation at later phases. Neuroscience. 1995; 67(4): 799–807. doi: 10.1016/0306-4522(95)00117-2
  55. Kramár E.A., Babayan A.H., Gavin C.F. et al. Synaptic evidence for the efficacy of spaced learning. Proc. Natl. Acad. Sci. USA. 2012; 109(13): 5121–5126. doi: 10.1073/pnas.1120700109
  56. Cao G., Harris K.M. Augmenting saturated LTP by broadly spaced episodes of theta-burst stimulation in hippocampal area CA1 of adult rats and mice. J. Neurophysiol. 2014; 112(8): 1916–1924. doi: 10.1152/jn.00297.2014
  57. Bergmann T.O. Brain state-dependent brain stimulation. Front. Psychol. 2018; 9: 2108. doi: 10.3389/fpsyg.2018.02108
  58. Baur D., Galevska D., Hussain S. et al. Induction of LTD-like corticospinal plasticity by low-frequency rTMS depends on pre-stimulus phase of sensorimotor μ-rhythm. Brain Stimul. 2020; 13(6): 1580–1587. doi: 10.1016/j.brs.2020.09.005
  59. Guerra A., López-Alonso V., Cheeran B., Suppa A. Variability in non-invasive brain stimulation studies: Reasons and results. Neurosci. Lett. 2020; 719: 133330. doi: 10.1016/j.neulet.2017.12.058
  60. Ozdemir R.A., Boucher P., Fried P.J. et al. Reproducibility of cortical response modulation induced by intermittent and continuous theta-burst stimulation of the human motor cortex. Brain Stimul. 2021; 14(4): 949–964. doi: 10.1016/j.brs.2021.05.013
  61. Chervyakov A.V., Sinitsyn D.O., Piradov M.A. Variability of neuronal responses: types and functional significance in neuroplasticity and neural darwinism. Front. Hum. Neurosci. 2016; 10: 603. doi: 10.3389/fnhum.2016.00603
  62. Li S., Jin M., Koeglsperger T. et al. Soluble Aβ oligomers inhibit long-term potentiation through a mechanism involving excessive activation of extrasynaptic NR2B-containing NMDA receptors. J. Neurosci. 2011; 31(18): 6627–6638. doi: 10.1523/JNEUROSCI.0203-11.2011
  63. Rönicke R., Mikhaylova M., Rönicke S. et al. Early neuronal dysfunction by amyloid β oligomers depends on activation of NR2B-containing NMDA receptors. Neurobiol. Aging. 2011; 32(12): 2219–2228. doi: 10.1016/j.neurobiolaging.2010.01.011
  64. Balducci C., Tonini R., Zianni E. et al. Cognitive deficits associated with alteration of synaptic metaplasticity precede plaque deposition in AβPP23 transgenic mice. J. Alzheimers Dis. 2010; 21(4): 1367–1381. doi: 10.3233/jad-2010-100675
  65. Giordano N., Iemolo A., Mancini M. et al. Motor learning and metaplasticity in striatal neurons: relevance for Parkinson’s disease. Brain. 2018; 141(2): 505–520. doi: 10.1093/brain/awx351
  66. Chiamulera C., Piva A., Abraham W.C. Glutamate receptors and metaplasticity in addiction. Curr. Opin. Pharmacol. 2021; 56: 39–45. doi: 10.1016/j.coph.2020.09.005
  67. Quartarone A., Rizzo V., Bagnato S. et al. Homeostatic-like plasticity of the primary motor hand area is impaired in focal hand dystonia. Brain. 2005; 128 (Pt 8): 1943–1950. doi: 10.1093/brain/awh527
  68. Kang J.S., Terranova C., Hilker R. et al. Deficient homeostatic regulation of practice-dependent plasticity in writer’s cramp. Cereb. Cortex. 2011; 21(5): 1203–1212. doi: 10.1093/cercor/bhq204
  69. Antal A., Lang N., Boros K. et al. Homeostatic metaplasticity of the motor cortex is altered during headache-free intervals in migraine with aura. Cereb. Cortex. 2008; 18(11): 2701–2705. doi: 10.1093/cercor/bhn032
  70. Baione V., Belvisi D., Cortese A. et al. Cortical M1 plasticity and metaplasticity in patients with multiple sclerosis. Mult. Scler. Relat. Disord. 2020; 38: 101494. doi: 10.1016/j.msard.2019.101494
  71. Naro A., Bramanti A., Leo A. et al. Metaplasticity: a promising tool to disentangle chronic disorders of consciousness differential diagnosis. Int. J. Neural. Syst. 2018; 28(6): 1750059. doi: 10.1142/S0129065717500599
  72. Sundman M.H., Lim K., Ton That V. et al. Transcranial magnetic stimulation reveals diminished homoeostatic metaplasticity in cognitively impaired adults. Brain Commun. 2020; 2(2): fcaa203. doi: 10.1093/braincomms/fcaa203
  73. Бакулин И.С., Пойдашева А.Г., Лагода Д.Ю. и др. Перспективы развития терапевтической транскраниальной магнитной стимуляции. Нервные болезни. 2021; 4: 3–10. Bakulin I.S., Poydasheva A.G., Lagoda D.Yu. et al. Prospects for the development of therapeutic transcranial magnetic stimulation. Nervnye bolezni. 2021; 4: 3–10. (In Russ.) doi: 10.24412/2226-0757-2021-12371
  74. Hordacre B., Ridding M.C., Goldsworthy M.R. Response variability to non-invasive brain stimulation protocols. Clin. Neurophysiol. 2015; 126(12): 2249–2250. doi: 10.1016/j.clinph.2015.04.052
  75. Fitzgerald P.B., Hoy K., McQueen S. et al. Priming stimulation enhances the effectiveness of low-frequency right prefrontal cortex transcranial magnetic stimulation in major depression. J. Clin. Psychopharmacol. 2008; 28(1): 52–58. doi: 10.1097/jcp.0b013e3181603f7c
  76. Bolognini N., Pascual-Leone A., Fregni F. Using non-invasive brain stimulation to augment motor training-induced plasticity. J. Neuroeng. Rehabil. 2009; 6: 8. doi: 10.1186/1743-0003-6-8
  77. Cassidy J.M., Gillick B.T., Carey J.R. Priming the brain to capitalize on meta- plasticity in stroke rehabilitation. Phys. Ther. 2014; 94(1): 139–150. doi: 10.2522/ptj.20130027
  78. Takeuchi N, Izumi S. Combinations of stroke neurorehabilitation to facilitate motor recovery: perspectives on Hebbian plasticity and homeostatic metaplasticity. Front. Hum. Neurosci. 2015; 9: 349. doi: 10.3389/fnhum.2015.00349
  79. Kang N., Summers J.J., Cauraugh J.H. Transcranial direct current stimulation facilitates motor learning post-stroke: a systematic review and meta-analysis. J. Neurol. Neurosurg. Psychiatry. 2016; 87(4): 345–355. doi: 10.1136/jnnp-2015-311242
  80. Giacobbe V., Krebs H.I., Volpe B.T. et al. Transcranial direct current stimulation (tDCS) and robotic practice in chronic stroke: the dimension of timing. NeuroRehabilitation. 2013; 33(1): 49–56. doi: 10.3233/NRE-130927
  81. Cabral M.E., Baltar A., Borba R. et al. Transcranial direct current stimulation: before, during, or after motor training? Neuroreport. 2015; 26(11): 618–622. doi: 10.1097/WNR.0000000000000397
  82. Avenanti A., Coccia M., Ladavas E. et al. Low-frequency rTMS promotes use-dependent motor plasticity in chronic stroke: a randomized trial. Neurology. 2012; 78(4): 256–264. doi: 10.1212/WNL.0b013e3182436558
  83. Carey J.R., Deng H., Gillick B.T. et al. Serial treatments of primed low-frequency rTMS in stroke: characteristics of responders vs. nonresponders. Restor. Neurol. Neurosci. 2014; 32(2): 323–335. doi: 10.3233/RNN-130358
  84. Cassidy J.M., Chu H., Anderson D.C. et al. A comparison of primed low-frequency repetitive transcranial magnetic stimulation treatments in chronic stroke. Brain Stimul. 2015; 8(6): 1074–1084. doi: 10.1016/j.brs.2015.06.007
  85. Zhang J.J., Fong K.N.K. Effects of priming intermittent theta burst stimulation on upper limb motor recovery after stroke: study protocol for a proof-of-concept randomised controlled trial. BMJ Open. 2020; 10(3): e035348. doi: 10.1136/bmjopen-2019-035348
  86. Cheng I., Scarlett H., Zhang M., Hamdy S. Preconditioning human pharyngeal motor cortex enhances directional metaplasticity induced by repetitive transcranial magnetic stimulation. J. Physiol. 2020; 598(22): 5213–5230. doi: 10.1113/JP279977
  87. Sonmez A.I., Camsari D.D., Nandakumar A.L. et al. Accelerated TMS for Depression: A systematic review and meta-analysis. Psychiatry Res. 2019; 273: 770–781. doi: 10.1016/j.psychres.2018.12.041
  88. Cheng C.M., Li C.T., Tsai S.J. Current updates on newer forms of transcranial magnetic stimulation in major depression. Adv. Exp. Med. Biol. 2021; 1305: 333–349. doi: 10.1007/978-981-33-6044-0_18
  89. Cole E.J., Phillips A.L., Bentzley B.S. et al. Stanford Neuromodulation Therapy (SNT): a double-blind randomized controlled trial. Am. J. Psychiatry. 2022; 179(2):132–141. doi: 10.1176/appi.ajp.2021.20101429
  90. Baeken C., Vanderhasselt M.A., Remue J. et al. Intensive HF-rTMS treatment in refractory medication-resistant unipolar depressed patients. J. Affect. Disord. 2013; 151(2): 625–631. doi: 10.1016/j.jad.2013.07.008
  91. Duprat R., Desmyter S., Rudi de R. et al. Accelerated intermittent theta burst stimulation treatment in medication-resistant major depression: a fast road to remission? J. Affect. Disord. 2016; 200: 6–14. doi: 10.1016/j.jad.2016.04.015
  92. Desmyter S., Duprat R., Baeken C. et al. Accelerated intermittent theta burst stimulation for suicide risk in therapy-resistant depressed patients: a randomized, sham-controlled trial. Front. Hum. Neurosci. 2016; 10: 480. doi: 10.3389/fnhum.2016.00480
  93. Blumberger D.M., Vila-Rodriguez F., Wang W. et al. A randomized sham controlled comparison of once vs twice-daily intermittent theta burst stimulation in depression: A Canadian rTMS treatment and biomarker network in depression (CARTBIND) study. Brain Stimul. 2021; 14(6): 1447–1455. doi: 10.1016/j.brs.2021.09.003
  94. Fitzgerald P.B., Hoy K.E., Elliot D. et al. Accelerated repetitive transcranial magnetic stimulation in the treatment of depression. Neuropsychopharmacology. 2018; 43(7): 1565–1572. doi: 10.1038/s41386-018-0009-9
  95. Loo C.K., Mitchell P.B., McFarquhar T.F et al. A sham-controlled trial of the efficacy and safety of twice-daily rTMS in major depression. Psychol. Med. 2007; 37(3): 341–349. doi: 10.1017/S0033291706009597
  96. Cole E.J., Stimpson K.H., Bentzley B.S. et al. Stanford accelerated intelligent neuromodulation therapy for treatment-resistant depression. Am. J. Psychiatry. 2020; 177(8): 716–726. doi: 10.1176/appi.ajp.2019.19070720

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Бакулин И.С., Пойдашева А.Г., Забирова А.Х., Супонева Н.А., Пирадов М.А., 2022

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах