Features of residual brain activity in patients with chronic disorders of consciousness on resting-state functional MRI

Abstract

Introduction. Rapid advances in critical care medicine have led to an increased survival rate of patients with severe brain damage and, consequently, to an increased prevalence of chronic disorders of consciousness (CDC). The lack of or fluctuations in signs of consciousness, which accompany the restoration of alertness after recovery from coma, indicate whether the type of CDC is a vegetative state or minimally conscious state. Correct diagnosis determines not only the rehabilitation outcome but also the economic outlook for a particular patient. However, the subjective nature of signs of consciousness, which are identified during clinical examination using neurological scales, is a common cause of diagnostic errors. The study of spontaneous activity using resting-state functional magnetic resonance imaging (fMRI) has helped to identify resting state networks. The default mode network (DMN) is one of the most studied brain networks. Its signal can change or be absent in patients with various types of CDC.

Purpose. To study the signal of residual spontaneous brain activity in patients with CDC at rest.

Materials and methods. Twenty-two patients with permanent CDC underwent resting state fMRI as an additional tool in the differential diagnosis between vegetative state and minimally conscious state at the Research Centre of Neurology.

Results. It was found that the nature of the signal coming from anatomical regions that are part of the DMN changes when signs of consciousness emerge.

Conclusion. These changes confirm that resting state fMRI is an important additional tool for differential diagnosis of CDC types. Accumulating knowledge about the brain's functional state helps us to expand our overall understanding of the nature of consciousness.

About the authors

Liudmila A. Legostaeva

Research Center of Neurology

Author for correspondence.
Email: legostaeva@neurology.ru
ORCID iD: 0000-0001-7778-6687

Cand. Sci. (Med.), researcher, Neurorehabilitation department with TMS group

Russian Federation, 125367, Russia, Moscow, Volokolamskoye shosse, 80

Elena I. Kremneva

Research Center of Neurology

Email: legostaeva@neurology.ru
ORCID iD: 0000-0001-9396-6063

Cand. Sci. (Med.), senior researcher, Radiology department

Russian Federation, 125367, Russia, Moscow, Volokolamskoye shosse, 80

Dmitry O. Sinitsyn

Research Center of Neurology

Email: legostaeva@neurology.ru
ORCID iD: 0000-0001-9951-9803

Cand. Sci. (Phys.-Math.), researcher, Neurorehabilitation department with TMS group

Russian Federation, 125367, Russia, Moscow, Volokolamskoye shosse, 80

Elizaveta G. Iazeva

Research Center of Neurology

Email: legostaeva@neurology.ru
ORCID iD: 0000-0003-0382-7719

neurologist, Intensive care unit

Russian Federation, 125367, Russia, Moscow, Volokolamskoye shosse, 80

Dmitry V. Sergeev

Research Center of Neurology

Email: legostaeva@neurology.ru
ORCID iD: 0000-0002-9130-1292

Cand. Sci. (Med.), neurologist, Neurorehabilitation department with TMS group

Russian Federation, 125367, Russia, Moscow, Volokolamskoye shosse, 80

Alexandra G. Poydasheva

Research Center of Neurology

Email: legostaeva@neurology.ru
ORCID iD: 0000-0003-1841-1177

junior researcher, Neurorehabilitation department with TMS group

Russian Federation, 125367, Russia, Moscow, Volokolamskoye shosse, 80

Ilya S. Bakulin

Research Center of Neurology

Email: legostaeva@neurology.ru
ORCID iD: 0000-0003-0716-3737

Cand. Sci. (Med.), researcher, Neurorehabilitation department with TMS group

Russian Federation, 125367, Russia, Moscow, Volokolamskoye shosse, 80

Dmitry Yu. Lagoda

Research Center of Neurology

Email: legostaeva@neurology.ru
ORCID iD: 0000-0002-9267-8315

junior researcher, Neurorehabilitation department with TMS group

Russian Federation, 125367, Russia, Moscow, Volokolamskoye shosse, 80

Anastasia N. Sergeeva

Research Center of Neurology

Email: legostaeva@neurology.ru
ORCID iD: 0000-0002-2481-4565

Cand. Sci. (Med.), researcher, Radiology department

Russian Federation, 125367, Russia, Moscow, Volokolamskoye shosse, 80

Sofya N. Morozova

Research Center of Neurology

Email: legostaeva@neurology.ru
ORCID iD: 0000-0002-9093-344X

Cand. Sci. (Med.), researcher, Neuroradiology department

Russian Federation, 125367, Russia, Moscow, Volokolamskoye shosse, 80

Yulia V. Ryabinkina

Research Center of Neurology

Email: legostaeva@neurology.ru
ORCID iD: 0000-0001-8576-9983

D. Sci. (Med.), Head, Intensive care unit department

Russian Federation, 125367, Russia, Moscow, Volokolamskoye shosse, 80

Marina V. Krotenkova

Research Center of Neurology

Email: legostaeva@neurology.ru
ORCID iD: 0000-0003-3820-4554

D. Sci. (Med.), Head, Radiology department

Russian Federation, 125367, Russia, Moscow, Volokolamskoye shosse, 80

Natalia A. Suponeva

Research Center of Neurology

Email: legostaeva@neurology.ru
ORCID iD: 0000-0003-3956-6362

D. Sci. (Med.), Professor, Corresponding Member of the Russian Academy of Sciences, Head, Neurorehabilitation department with TMS group

Russian Federation, 125367, Russia, Moscow, Volokolamskoye shosse, 80

Michail A. Piradov

Research Center of Neurology

Email: legostaeva@neurology.ru
ORCID iD: 0000-0002-6338-0392

D. Sci. (Med.), Professor, Academician of the Russian Academy of Sciences, Director

Russian Federation, 125367, Russia, Moscow, Volokolamskoye shosse, 80

References

  1. Пирадов М.А., Супонева Н.А., Вознюк И.А. и др. Хронические нарушения сознания: терминология и диагностические критерии. Результаты первого заседания Российской рабочей группы по проблемам хронических нарушений сознания. Анналы клинической и экспериментальной неврологии. 2020; 14(1): 5–16. Piradov M.A., Suponeva N.A., Voznyuk I.A. et al. Russian workgroup on chronic disorders of consciousness. Chronic disorders of consciousness: terminology and diagnostic criteria. The results of the first meeting of the Russian Working Group for Chronic Disorders of Consciousness. Annals of clinical and experimental neurology. 2020; 14(1): 5–16. (In Russ.) doi: 10.25692/ACEN.2020.1.1
  2. Бакулин И.С., Кремнева Е.И., Кузнецов А.В. и др. Хронические нарушения сознания. Под ред. М.А. Пирадова. М., 2020. 288 с. Bakulin I.S., Kremneva E.I., Kuznetsov A.V. et al. Chronic disorders of consciousness. Ed. M.A. Piradov. Moscow, 2020. 288 p. (In Russ.)
  3. von Wild K., Laureys S.T., Gerstenbrand F. et al. The vegetative state — a syndrome in search of a name. J. Med. Life. 2012; 5(1): 3–15.
  4. Кондратьева Е.А., Авдунина И.А., Кондратьев А.Н. и др. Определение признаков сознания и прогнозирование исхода у пациентов в вегетативном состоянии. Вестник Российской академии медицинских наук. 2016; 71(4): 273–280. Kondratyeva E.А., Avdunina I.A., Kondratyev A.N. et al. Vegetative state: difficulty in identifying consciousness and predicting outcome. Annals of the Russian Academy of Medical Sciences. 2016; 71(4): 273–280. (In Russ.) doi: 10.15690/vramn728
  5. Cairns H. Head injuries in motor-cyclists the importance of the crash helmet. Br. Med. J. 1941; 2(4213): 465–471. doi: 10.1136/bmj.2.4213.465
  6. Thibaut A., Bodien Y.G, Laureys S., Giacino J.T. Minimally conscious state “plus”: diagnostic criteria and relation to functional recovery. J. Neurol. 2020; 267(5): 1245–1254. doi: 10.1007/s00415-019-09628
  7. Giacino J.T., Katz D.I., Schiff N.D., et al. Practice guideline update recommendations summary: disorders of consciousness: report of the Guideline Development, Dissemination, and Implementation Subcommittee of the American Academy of Neurology; the American Congress of Rehabilitation Medicine; and the National Institute on Disability, Independent Living, and Rehabilitation Research. Arch. Phys. Med. Rehabil. 2018; 99(9): 1699–1709. doi: 10.1016/j.apmr.2018.07.001
  8. Wade D.T. How often is the diagnosis of the permanent vegetative state incorrect? A review of the evidence. Eur. J. Neurol. 2018; 25(4):619–625. doi: 10.1111/ene.13572
  9. Iazeva E G., Legostaeva L.A., Zimin A.A. et al. A Russian validation study of the Coma Recovery Scale-Revised (CRS-R). Brain Inj. 2018; 33(2): 218–225. doi: 10.1080/02699052.2018.1539248
  10. Пирадов М.А., Супонева Н.А., Селиверстов Ю.А. и др. Возможности современных методов нейровизуализации в изучении спонтанной активности головного мозга в состоянии покоя. Неврологический журнал. 2016; 21(1): 4–12. Piradov M.A., Suponeva N.A., Seliverstov Yu.A. et al. The opportunities of modern imaging methods in the study of spontaneous brain activity in state. Nevrologicheskiy Zhurnal. 2016; 21(1): 4–12. doi: 10.18821/1560-9545-2016-21-1-4-12
  11. Salvador R., Suckling J., Coleman M.R. et al. Neurophysiological architecture of functional magnetic resonance images of human brain. Cereb. Cortex. 2005; 15(9): 1332–1342. doi: 10.1093/cercor/bhi016
  12. Baars B.J., Banks W.P., Newman J.B. (eds.) Essential sources in the scientific study of consciousness. Cambridge, 2003. 1192 p.
  13. Owen A.M., Coleman M.R, Boly M. et al. Detecting awareness in the vegetative state. Science. 2006; 313(5792): 1402. doi: 10.1126/science.1130197
  14. Beckmann C.F., DeLuca M., Devlin J.T. et al. Investigations into res-ting-state connectivity using independent component analysis . Philos. Trans. R. Soc. B Biol. Sci. 2005; 360(1457): 1001–1013. doi: 10.1098/rstb.2005.1634
  15. Biswal B., Zerrin Yetkin F., Haughton V.M., Hyde J.S. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn. Reson. Med. 1995; 34(4): 537–541. doi: 10.1002/mrm.1910340409
  16. Blumenfeld H. Neuroanatomical basis of consciousness. Elsevier; 2016. doi: 10.1016/B978-0-12-800948-2.00001-7
  17. Crick F.C., Koch C. What is the function of the claustrum? Philos. Trans. R. Soc. B Biol. Sci. 2005; 360(1458): 1271–1279. doi: 10.1098/rstb.2005.1661
  18. Dreher J., Grafman J. The roles of the cerebellum and basal ganglia in timing and error prediction. Eur. J. Neurosci. 2002; 16(8): 1609–1619. doi: 10.1046/j.1460-9568.2002.02212.x
  19. van Erp W.S., Lavrijsen J.C.M., van de Laar F.A. et al. The vegetative state/unresponsive wakefulness syndrome: a systematic review of prevalence studies. Eur. J. Neurol. 2014; 21(11): 1361–1368. doi: 10.1111/ene.12483
  20. Medina J.P., Nigri A., Stanziano M. et al. Resting-state fMRI in chronic patients with disorders of consciousness: the role of lower-order networks for clinical assessment. Brain Sci. 2022; 12(3): 355. doi: 10.3390/brainsci12030355
  21. Damoiseaux J.S., Beckmann C.F., Sanz Arigita E.J. Reduced resting-state brain activity in the “default network” in normal aging. Cereb. Cortex. 2007; 18(8): 1856–1864. doi: 10.1093/cercor/bhm207
  22. Fransson P., Marrelec G. The precuneus/posterior cingulate cortex plays a pivotal role in the default mode network: evidence from a partial correlation network analysis. Neuroimage. 2008; 42(3): 1178–1184. doi: 10.1016/j.neuroimage.2008.05.059
  23. Giacino J., Kalmar K. Diagnostic and prognostic guidelines for the vegetative and minimally conscious states. Neuropsychol. Rehabil. 2005; 15(3–4): 166–174. doi: 10.1080/09602010443000498
  24. Demertzi A., Soddu A., Laureys S. Consciousness supporting networks. Curr. Opin. Neurobiol. 2013; 23(2): 239–244. doi: 10.1016/j.conb.2012.12.003
  25. Vincent J.L., Kahn I., Snyder A.Z. et al. Evidence for a frontoparietal control system revealed by intrinsic functional connectivity. J. Neurophysiol. 2008; 100(6): 3328–3342. doi: 10.1152/jn.90355.2008
  26. Vanhaudenhuyse A., Demertzi A., Schabus M. et al. Two distinct neuronal networks mediate the awareness of environment and of self. J. Cogn. Neurosci. 2011; 23(3): 570–578. doi: 10.1162/jocn.2010.21488
  27. Heuvel M.P. van den, Pol H.E.H. Exploring the brain network: a review on resting-state fMRI functional connectivity. Eur. Neuropsychopharmacol. 2010; 20(8): 519–534. doi: 10.1016/j.euroneuro.2010.03.008
  28. Honey C.J., Sporns O., Cammoun L. et al. Predicting human resting-state functional connectivity from structural connectivity. Proc. Natl. Acad. Sci. U. S. A. 2009; 106(6): 2035–2040. doi: 10.1073/pnas.0811168106
  29. Schiff N.D. Modeling the minimally conscious state: measurements of brain function and therapeutic possibilities. Prog. Brain Res. 2005; 150: 473–610. doi: 10.1016/S0079-6123(05)50033-5
  30. Monti M.M., Schnakers C. To fMRI or not to fMRI? A flowchart translating guidelines for management of patients with disorders of consciousness into routine practice. PsyArXiv. 3 May 2021. doi: 10.31234/osf.io/cvx65
  31. Piradov M.A., Suponeva N.A., Ryabinkina Y.V. et al. Study of chronic post-comatose states: on the way to understanding the phenomenon of consciousness. Advances in cognitive research, artificial intelligence and neuroinformatics. In: Proceedings of the 9th International Conference on Cognitive Sciences, INTERCOGNSCI-2020. Moscow, 2020: 523–532. (In Russ.) doi: 10.1007/978-3-030-71637-0_60
  32. Edlow B.L. Covert consciousness: searching for volitional brain activity in the unresponsive. Curr. Biol. 2018; 28(23): R1345–R1348. doi: 10.1016/j.cub.2018.10.022
  33. Gębska-Kośla K., Głąbiński A., Sabiniewicz M. et al. The use of functional magnetic resonance imaging techniques in the evaluation of patients with disorders of consciousness: a case report. Pol. J. Radiol. 2020; 85: e118–e124. doi: 10.5114/pjr.2020.93664
  34. Thomson H. Hidden consciousness. New Scientist. 2019; 242(3236): 38–42.
  35. Cruse D., Owen A.M. Consciousness revealed: new insights into the vegetative and minimally conscious states. Curr. Opin. Neurol. 2010; 23(6): 656–660. doi: 10.1097/WCO.0b013e32833fd4e7
  36. Petrenko V.F., Mitina O.V., Suprun A.P. Conscious and unconscious cognition in psychosemantics. Psychology. Journal of Higher School of Economics. 2021; 18(4): 930–943. doi: 10.17323/1813-8918-2021-4-930-943
  37. Sontheimer A., Pontier B., Claise B. et al. Disrupted pallido-thalamo-cortical functional connectivity in chronic disorders of consciousness. Brain Sci. 2021; 11(3): 356. doi: 10.3390/brainsci11030356
  38. Northoff G., Lamme V. Neural signs and mechanisms of consciousness: is there a potential convergence of theories of consciousness in sight? Neurosci. Biobehav. Rev. 2020; 118: 568–587. doi: 10.1016/j.neubiorev.2020.07.019
  39. Qin P., Di H., Liu Y. et al. Anterior cingulate activity and the self in disorders of consciousness. Human Brain Mapp. 2010; 31(12): 1993–2002. doi: 10.1002/hbm.20989
  40. Shea N., Bayne T. The vegetative state and the science of consciousness. Br. J. Philos. Sci. 2020; 61(3): 459–484. doi: 10.1093/bjps/axp046
  41. Aubinet C., Larroque S.K., Heine L. et al. Clinical subcategorization of mini- mally conscious state according to resting functional connectivity. Human Brain Mapp. 2018; 39(11): 4519–4532. doi: 10.1002/hbm.24303
  42. Sanz L.R.D., Thibaut A., Edlow B.L. et al. Update on neuroimaging in disorders of consciousness. Curr. Opin. Neurol. 2021; 34(4): 488–496. doi: 10.1097/WCO.0000000000000951
  43. López-González A., Panda R., Ponce-Alvarez A. et al. Loss of consciousness reduces the stability of brain hubs and the heterogeneity of brain dynamics. Commun. Biol. 2021; 4(1): 1–15. doi: 10.1038/s42003-021-02537-9
  44. Horovitz S.G., Braun A.R., Carr W.S. et al. Decoupling of the brain’s default mode network during deep sleep. Proc. Natl. Acad. Sci. U. S. A. 2009; 106(27): 11376–11381. doi: 10.1073/pnas.0901435106
  45. Hong C.C.H., Fallon J.H., Friston K.J. fMRI evidence for default mode network deactivation associated with rapid eye movements in sleep. Brain Sci. 2021; 11(11): 1528. doi: 10.3390/brainsci11111528
  46. Larson-Prior L.J., Zempel J.M., Nolan T.S. et al. Cortical network functional connectivity in the descent to sleep. Proc. Natl. Acad. Sci. U. S. A. 2009; 106(11): 4489–4494. doi: 10.1073/pnas.0900924106
  47. Laureys S. The neural correlate of (un)awareness: lessons from the vegetative state. Trends Cogn. Sci. 2005; 9(12): 556–559. doi: 10.1016/j.tics.2005.10.010
  48. Scheidegger M., Walter M., Lehmann M. et al. Ketamine decreases resting state functional network connectivity in healthy subjects: implications for antidepressant drug action. PLoS One. 2012; 7(9):e44799. doi: 10.1371/journal.pone.0044799
  49. Sarasso S., Boly M., Napolitani M. et al. Consciousness and complexity during unresponsiveness induced by propofol, xenon, and ketamine. Curr. Biol. 2015; 25(23): 3099–3105. doi: 10.1016/j.cub.2015.10.014
  50. Piorecky M., Koudelka V., Miletinova E. et al. Simultaneous fMRI-EEG-based characterisation of NREM parasomnia disease: methods and limitations. Diagnostics. 2020; 10(12): 1087. doi: 10.3390/diagnostics10121087
  51. Krauzlis R.J., Lovejoy L.P., Zénon A. Superior colliculus and visual spatial attention. Annu. Rev. Neurosci. 2013; 36: 165–182. doi: 10.1146/annurev-neuro-062012-170249
  52. Adhikari B., Deckert J., Hipp J. et al. T150. Evaluating the effects of keta- mine and midazolam using enigma resting state fMRI pipeline. Biol. Psychiatry. 2019; 85(10): S187. doi: 10.1016/j.biopsych.2019.03.473
  53. Scheidegger M., Walter M., Lehmann M. et al. Ketamine decreases resting state functional network connectivity in healthy subjects: implications for antidepressant drug action. PLoS One. 2012; 7(9): e44799. doi: 10.1371/journal.pone.0044799
  54. Forsyth A.E.M., McMillan R., Dukart J. et al. Effects of ketamine and mida- zolam on simultaneous EEG/fMRI data during working memory processes. Brain Topogr. 2021; 34(6): 863–880. doi: 10.1007/s10548-021-00876-8
  55. Mueller F., Musso F., London M. et al. Pharmacological fMRI: effects of subanesthetic ketamine on resting-state functional connectivity in the default mode network, salience network, dorsal attention network and executive control network. NeuroImage Clin. 2018; 19: 745–757. doi: 10.1016/j.nicl.2018.05.037

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1 Example of visual assessment of an fMRI component in patients with CDC. The presence of signal from the left angular gyrus, posterior cingulate gyrus, and weak signal from the medial prefrontal cortex is visually assessed.

Download (132KB)
3. Fig. 2. Example of an independent component containing an artefact from the basal cisterns.

Download (124KB)
4. Fig. 3. Independent components of the BOLD signal, corresponding to the DMN.

Download (629KB)
5. Fig. 4. Correlation between the level of consciousness in patients with CDC as measured by the CRS-R, and signal activity from parts of the DMN. А — medial prefrontal cortex; В — posterior cingulate gyrus; С — right angular gyrus; D — left angular gyrus. Along the y-axis — signal intensity: 0 — no signal; 1 — weak/uncertain signal; 2 — presence of signal.

Download (131KB)
6. Fig. 5. Frequency of TDS points (horizontal axis) obtained when individually assessing activity in parts of the DMN in patients with CDC. Light bars — patients in a vegetative state; dark bars — patients in a mini- mally conscious state.

Download (31KB)

Copyright (c) 2022 Legostaeva L.A., Kremneva E.I., Sinitsyn D.O., Iazeva E.G., Sergeev D.V., Poydasheva A.G., Bakulin I.S., Lagoda D.Y., Sergeeva A.N., Morozova S.N., Ryabinkina Y.V., Krotenkova M.V., Suponeva N.A., Piradov M.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies