Survival, cognitive functions, and brain MRI in patients with cSVD: 5-year observation

Abstract

Introduction. Contributing to high disability and mortality, cerebral small vessel disease (cSVD) is a common condition in senior and elderly individuals.

Objective: to assess the 5-year survival as well as cognitive and MRI changes in patients with cSVD and cognitive impairment (CI).

Materials and methods. A prospective 5-year study included 54 patients (of them 37 women; mean age: 60.51 ± 6.76 years) with cSVD, CIs, and white matter hyperintensities (WMHs; Fazekas 2–3). Twenty-two subjects were followed up to assess cognitive functions and a type of CI, cSVD MRI features, WMH, white and grey matter, and cerebrospinal fluid (CSF) volume as well as microstructural brain changes and correlate cognitive and MRI parameters at 5 years timepoint after the baseline.

Results. Dementia developed in 14% of the subjects and 14% of the subjects died over a 5-year period. The subjects assessed twice had controlled hypertension (HTN). CIs worsened in the domain of executive functions and memory with mixed-type CI worsening. The follow-up showed that the WMH and CSF volume increased while the white matter volume decreased and axial diffusivity increased in the corpus callosum. The CSF volume correlated with the Stroop Test results and delayed memory (r = 0.803 and r = –0.701, respectively) and with white matter atrophy (r = –0.256) while the latter correlated with the axial diffusivity increased in the corpus callosum (r = –0.560).

Conclusion. cSVD with advanced WMHs is associated with high mortality and dementia progression. General cognition assessment and MRI scan are not enough sensitive to assess disorder progression over a 5-year period. Stroop Test and Delayed 10-Word Recall Test results and transition to mixed-type CI indicate CI worsening and, therefore, can be used for the follow-up assessment. Cognitive decline in extensive cSVD is mediated by the brain matter atrophy and altered CSF circulation.

About the authors

Larisa A. Dobrynina

Research Center of Neurology

Email: dobrla@mail.ru
ORCID iD: 0000-0001-9929-2725

D. Sci. (Med.), chief researcher, Head, 3rd Neurological department

Russian Federation, 1125367, Moscow, Volokolamskoye shosse, 80

Zukhra Sh. Gadzhieva

Research Center of Neurology

Email: zuhradoc@mail.ru
ORCID iD: 0000-0001-7498-4063

Cand. Sci. (Med.), researcher, 3rd Neurological department

Russian Federation, 125367, Moscow, Volokolamskoye shosse, 80

Elena I. Kremneva

Research Center of Neurology

Email: kremneva@neurology.ru
ORCID iD: 0000-0001-9396-6063

Cand. Sci. (Med.), radiologist, senior researcher, Neuroradiology department, Institute of Clinical and Preventive Neurology

Russian Federation, 125367, Moscow, Volokolamskoye shosse, 80

Kamila V. Shamtieva

Research Center of Neurology

Email: kamila.shamt@gmail.com
ORCID iD: 0000-0002-6995-1352

Cand. Sci. (Med.), researcher, 3rd Neurological department, Institute of Clinical and Preventive Neurology

Russian Federation, 125367, Moscow, Volokolamskoye shosse, 80

Maria M. Tsypushtanova

Research Center of Neurology

Email: tzipushtanova@mail.ru
ORCID iD: 0000-0002-4231-3895

postgraduate student, neurologist, 3rd Neurological department, Institute of Clinical and Preventive Neurology

Russian Federation, 1125367, Moscow, Volokolamskoye shosse, 80

Angelina G. Makarova

Research Center of Neurology

Email: angelinagm@mail.ru
ORCID iD: 0000-0001-8862-654X

postgraduate student, neurologist, 3rd Neurological department, Institute of Clinical and Preventive Neurology

Russian Federation, 125367, Moscow, Volokolamskoye shosse, 80

Victoria V. Trubitsyna

Research Center of Neurology

Email: pobeda-1994@mail.ru
ORCID iD: 0000-0001-7898-6541

postgraduate student, radiologist, Neuroradiology department, Institute of Clinical and Preventive Neurology

Russian Federation, 125367, Moscow, Volokolamskoye shosse, 80

Elina T. Bitsieva

Research Center of Neurology

Email: elinabitsieva1997@mail.ru
ORCID iD: 0000-0003-1464-0722

postgraduate student, neurologist, 3rd Neurological department, Institute of Clinical and Preventive Neurology

Russian Federation, 125367, Moscow, Volokolamskoye shosse, 80

Aleksey S. Filatov

Research Center of Neurology

Email: fil4tovmd@gmail.com
ORCID iD: 0000-0002-5706-6997

postgraduate student, radiologist, Neuroradiology department, Institute of Clinical and Preventive Neurology

Russian Federation, 125367, Moscow, Volokolamskoye shosse, 80

Aleksandra A. Byrochkina

Research Center of Neurology

Email: byrochkinasasha@mail.ru
ORCID iD: 0000-0002-2285-2533

postgraduate student, neurologist, 3rd Neurological department, Institute of Clinical and Preventive Neurology

Russian Federation, 125367, Moscow, Volokolamskoye shosse, 80

Marina V. Krotenkova

Research Center of Neurology

Author for correspondence.
Email: krotenkova_mrt@mail.ru
ORCID iD: 0000-0003-3820-4554

D. Sci. (Med.), Head, Neuroradiology department, Institute of Clinical and Preventive Neurology, Research Center of Neurology

Russian Federation, 125367 Moscow, Volokolamskoye shosse, 80

References

  1. Pantoni L. Cerebral small vessel disease: from pathogenesis and clinical characteristics to therapeutic challenges. Lancet Neurol. 2010; 9(7): 689–701. doi: 10.1016/S1474-4422(10)70104-6
  2. Wardlaw J.M., Smith E.E., Biessels G.J. et al. Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration. Lancet Neurol. 2013; 12(8): 822–838. doi: 10.1016/S1474-4422(13)70124-8
  3. Cannistraro R.J., Badi M., Eidelman B.H. et al. CNS small vessel disease: a clinical review. Neurology. 2019; 92(24): 1146–1156. doi: 10.1212/WNL.0000000000007654.
  4. Maillard P., Crivello F., Dufouil C. et al. Longitudinal follow-up of individual white matter hyperintensities in a large cohort of elderly. Neuroradiology. 2009; 51(4): 209–220. doi: 10.1007/s00234-008-0489-0
  5. Hilal S., Mok V., Youn Y.C. et al. Prevalence, risk factors and consequences of cerebral small vessel diseases: data from three Asian countries. J. Neurol. Neurosurg. Psychiatry. 2017; 88(8): 669–674. doi: 10.1136/JNNP-2016-315324
  6. Inzitari D., Pracucci G., Poggesi A. et al. Changes in white matter as determinant of global functional decline in older independent outpatients: three year follow-up of LADIS (leukoaraiosis and disability) study cohort. BMJ. 2009; 339: b2477. doi: 10.1136/BMJ.b2477
  7. Yilmaz P., Ikram M.K., Niessen W.J. et al. Practical small vessel disease score relates to stroke, dementia, and death. Stroke. 2018; 49(12): 2857–2865. doi: 10.1161/STROKEAHA.118.022485
  8. Wallin A., Nordlund A., Jonsson M. et al. The Gothenburg MCI study: design and distribution of Alzheimer’s disease and subcortical vascular disease diagnoses from baseline to 6-year follow-up. J. Cereb. Blood Flow Metab. 2016; 36(1): 114–131. doi: 10.2147/NDT.S352651
  9. Bath P.M., Wardlaw J.M. Pharmacological treatment and prevention of cerebral small vessel disease: a review of potential interventions. Int. J. Stroke. 2015; 10(4): 469–478. doi: 10.1111/IJS.12466
  10. Weber R., Weimar C., Blatchford J. et al. Telmisartan on top of antihypertensive treatment does not prevent progression of cerebral white matter lesions in the prevention regimen for effectively avoiding second strokes (PRoFESS) MRI substudy. Stroke. 2012; 43(9): 2336–2342. doi: 10.1161/STROKEAHA.111.648576
  11. Williamson J.D., Pajewski N.M., Auchus A.P. et al. Effect of intensive vs standard blood pressure control on probable dementia: a randomized clinical trial. JAMA. 2019; 321(6): 553–561. doi: 10.1001/JAMA.2018.21442
  12. Nasrallah I.M., Pajewski N.M., Auchus A.P. et al. Association of intensive vs standard blood pressure control with cerebral white matter lesions. JAMA. 2019; 322(6): 524–534. doi: 10.1001/JAMA.2019.10551
  13. Kwan J., Hafdi M., Chiang L.W. et al. Antithrombotic therapy to prevent cognitive decline in people with small vessel disease on neuroimaging but without dementia. Cochrane Database Syst. Rev. 2022; 7(7): CD012269. doi: 10.1002/14651858.CD012269.pub2
  14. Lawrence A.J., Brookes R.L., Zeestraten E.A. et al. Pattern and rate of cognitive decline in cerebral small vessel disease: a prospective study. PLoS One. 2015; 10(8): e0135523. doi: 10.1371/JOURNAL.PONE.0135523
  15. Sachdev P., Kalaria R., O’Brien J. et al. Diagnostic criteria for vascular cognitive disorders: A VASCOG statement. Alzheimer Dis. Assoc. Disord. 2014; 28: 206–218. doi: 10.1097/WAD.0000000000000034
  16. Dufouil C., Chalmers J., Coskun O. et al. PROGRESS MRI Substudy Investigators. Effects of blood pressure lowering on cerebral white matter hyperintensities in patients with stroke: the PROGRESS (Perindopril Protection Against Recurrent Stroke Study) Magnetic Resonance Imaging Substudy. Circulation. 2005; 112(11): 1644–1650. doi: 10.1161/CIRCULATIONAHA.104.501163
  17. Wardlaw J.M., Debette S., Jokinen H. et al. ESO Guideline on covert cerebral small vessel disease. Eur. Stroke J. 2021; 6(2): CXI–CLXII. doi: 10.1177/23969873211027002
  18. Кремнева Е.И., Максимов И.И., Добрынина Л.А., Кротенкова М.В. Оценка микроструктуры белого вещества головного мозга по данным диффузионной магнитно-резонансной томографии: возможности и клиническое применение на примере церебральной микроангиопатии. Анналы клинической и экспериментальной неврологии. 2020; 14(1): 33–43. Kremneva E.I., Maximov I.I., Dobrynina L.A., Krotenkova M.V. The assessment of cerebral white matter microstructure in cerebral small vessel disease based on the diffusion-weighted magnetic resonance imaging. Annals of Clinical and experimental Neurology. 2020; 14(1): 33–43. (In Russ.) doi: 10.25692/ACEN.2020.1.4
  19. Pasi M., van Uden I.W., Tuladhar A.M. et al. White matter microstructural damage on diffusion tensor imaging in cerebral small vessel disease: clinical consequences. Stroke. 2016; 47(6): 1679–1684. doi: 10.1161/strokeaha.115.012065
  20. Raja R., Rosenberg G., Caprihan A. Review of diffusion MRI studies in chronic white matter diseases. Neurosci. Lett. 2019; 694: 198–207. doi: 10.1016/J.NEULET.2018.12.007
  21. Dobrynina L.A., Gadzhieva Z.S., Shamtieva K.V. et al. Microstructural predictors of cognitive impairment in cerebral small vessel disease and the conditions of their formation. Diagnostics (Basel). 2020; 10(9): 720.doi: 10.3390/DIAGNOSTICS10090720
  22. Добрынина Л.А., Гаджиева З.Ш., Шамтиева К.В. и др. Предикторы и интегративный показатель тяжести когнитивных расстройств при церебральной микроангиопатии. Журнал неврологии и психиатрии им. С.С. Корсакова. 2022; 122(4): 52–60. Dobrynina L.A., Gadzhieva Z.Sh., Shamtieva K.V. et al. Predictors and integrative index of severity of cognitive disorders in cerebral microangiopathy. S.S. Korsakov Journal of Neurology and Psychiatry. 2022; 122(4): 52–60. (In Russ.) doi: 10.17116/JNEVRO202212204152
  23. Iadecola C. The overlap between neurodegenerative and vascular factors in the pathogenesis of dementia. Acta Neuropathol. 2010; 120: 287–296.doi: 10.1007/S00401-010-0718-6.
  24. Attems J., Jellinger K.A. The overlap between vascular disease and Alzheimer’s disease — lessons from pathology. BMC Med. 2014; 12: 206. doi: 10.1186/S12916-014-0206-2
  25. Deramacourt V., Slade J.Y., Oakley A.E. et al. Staging and natural history of cerebrovascular pathology in dementia. Neurology. 2012; 78: 1043–1050. doi: 10.1212/WNL.0b013e31824e8e7f
  26. Scott T.M., Bhadelia R.A., Qiu W.Q. et al. Small vessel cerebrovascular pathology identified by magnetic resonance imaging is prevalent in Alzheimer’s disease and mild cognitive impairment: a potential target for intervention. J. Alzheimers Dis. 2018; 65(1): 293–302. doi: 10.3233/JAD-180366
  27. Barnes D., Yaffe K. The projected effect of risk factor reduction on Alzheimer’s disease prevalence. Lancet Neurol. 2011, 10(9): 819–828. doi: 10.1016/S1474-4422(11)70072-2
  28. Mu R., Qin X., Guo Z. et al. Prevalence and consequences of cerebral small vessel diseases: a cross-sectional study based on community people plotted against 5-year age strata. Neuropsychiatr. Dis. Treat. 2022; 18: 499–512. doi: 10.2147/NDT.S352651
  29. Добрынина Л.А., Гаджиева З.Ш., Калашникова Л.А. и др. Нейропсихологический профиль и факторы сосудистого риска у больных с церебральной микроангиопатией. Анналы клинической и экспериментальной неврологии. 2018; 12(4): 5–15. Dobrynina L.A., Gadzhieva Z.Sh., Kalashnikova L.A. et al. Neuropsychological profile and vascular risk factors in patients with cerebral microangiopathy. Annals of clinical and experimental neurology. 2018; 12(4): 5–15. (In Russ.) doi: 10.25692/ACEN.2018.4.1
  30. Добрынина Л.А., Гаджиева З.Ш., Шамтиева К.В. и др. Связь нарушений кровотока и ликворотока с повреждением стратегических для когнитивных расстройств зон мозга при церебральной микроангиопатии. Анналы клинической и экспериментальной неврологии. 2022; 16(2): 25–35. Dobrynina L.A., Gadzhieva Z.Sh., Shamtieva K.V. et al. Relations of impaired blood flow and cerebrospinal fluid flow with damage of strategic for cognitive impairment brain regiones in cerebral small vessel disease. Annals of clinical and experimental neurology. 2022; 16(2): 25–35. (In Russ.) doi: 10.54101/ACEN.2022.2.3
  31. Verhaaren B.F., Vernooij M.W., de Boer R. et al. High blood pressure and cerebral white matter lesion progression in the general population. Hypertension. 2013; 61(6): 1354–1359. doi: 10.1161/HYPERTENSIONAHA.111.00430
  32. Godin O., Tzourio C., Maillard P. et al. Antihypertensive treatment and change in blood pressure are associated with the progression of white matter lesion volumes: the Three-City (3C)-Dijon magnetic resonance imaging study. Circulation. 2011; 123(3): 266–273. doi: 10.1161/CIRCULATIONAHA.110.961052
  33. Gouw A.A., van der Flier W.M., Fazekas F. et al. Progression of white matter hyperintensities and incidence of new lacunes over a 3-year period: the Leukoaraiosis and Disability study. Stroke. 2008; 39(5): 1414–1420. doi: 10.1161/STROKEAHA.107.498535
  34. van Dijk E.J., Prins N.D., Vrooman H.A. et al. Progression of cerebral small vessel disease in relation to risk factors and cognitive consequences: Rotterdam Scan study. Stroke. 2008; 39(10): 2712–2719. doi: 10.1161/STROKEAHA.107.513176
  35. Schmidt R., Seiler S., Loitfelder M. Longitudinal change of small-vessel disease-related brain abnormalities. J. Cereb. Blood Flow Metab. 2016; 36(1): 26–39. doi: 10.1038/jcbfm.2015.72
  36. Poels M.M., Ikram M.A., van der Lugt A. et al. Incidence of cerebral microbleeds in the general population: the Rotterdam Scan Study. Stroke. 2011; 42(3): 656–661. doi: 10.1161/STROKEAHA.110.607184
  37. Lee S.H., Lee S.T., Kim B.J. et al. Dynamic temporal change of cerebral microbleeds: long-term follow-up MRI study. PLoS One. 2011; 6(10): e25930. doi: 10.1371/JOURNAL.PONE.0025930
  38. Добрынина Л.А., Гаджиева З.Ш., Ахметзянов Б.М. и др. Роль нарушений артериального, венозного кровотока и ликворотока в формировании когнитивных расстройств при возрастзависимой церебральной микроангиопатии. Журнал неврологии и психиатрии им. С.С. Корсакова. 2019; 119 (12 вып. 2): 81–88. Dobrynina L.A., Gadzhieva Z.Sh., Akhmetzyanov B.M. et al. The role of arterial, venous blood and cerebrospinal fluid flow disturbances in forming cognitive impairment in age-related cerebral microangiophathy. S.S. Korsakov Journal of Neurology and Psychiatry. 2019; 119 (12vyp2): 81–88. (In Russ.) doi: 10.17116/JNEVRO201911912281
  39. Iliff J.J., Wang M., Liao Y. et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid beta. Sci. Transl. Med. 2012; 4: 1–11. doi: 10.1126/SCITRANLMED.3003748
  40. Reeves B.C., Karimy J.K., Kundishora A.J. et al. Glymphatic system impairment in Alzheimer’s disease and idiopathic normal pressure hydrocephalus. Trends Mol. Med. 2020; 26(3): 285–295. doi: 10.1016/J.MOLMED.2019.11.008
  41. Koundal S., Elkin R., Nadeem S. et al. Optimal mass transport with Lagrangian workflow reveals advective and diffusion driven solute transport in the glymphatic system. Sci. Rep. 2020; 10(1): 1990. doi: 10.1038/s41598-020-59045-9
  42. Benveniste H., Nedergaard M. Cerebral small vessel disease: a glymphopathy? Curr. Opin. Neurobiol. 2022; 72: 15–21. doi: 10.1016/J.CONB.2021.07.006
  43. Custodio N., Montesinos R., Lira D. et al. Mixed dementia: a review of the evidence. Dement. Neuropsychol. 2017; 11(4): 364–370. doi: 10.1590/1980-57642016dn11-040005
  44. Williams O.A., Zeestraten E.A., Benjamin P. et al. Diffusion tensor image segmentation of the cerebrum provides a single measure of cerebral small vessel disease severity related to cognitive change. Neuroimage Clin. 2017; 16: 330–342. doi: 10.1016/J.NICL.2017.08.01621
  45. Williams O.A., Zeestraten E.A., Benjamin P. et al. Predicting dementia in cerebral small vessel disease using an automatic diffusion tensor image segmentation technique. Stroke. 2019; 50(10): 2775–2782. doi: 10.1161/STROKEAHA.119.025843
  46. Winklewski P.J., Sabisz A., Naumczyk P. et al. Understanding the physiopathology behind axial and radial diffusivity changes — what do we know? Front. Neurol. 2018; 9: 92.doi: 10.3389/FNTUR.2018.00092
  47. Kalaria R.N., Erkinjuntti T. Small vessel disease and subcortical vascular dementia. J. Clin. Neurol. 2006; 2(1): 1–11.doi: 10.3988/JCN.2006.2.1.1
  48. Bardehle S., Rafalski V.A., Akassoglou K. Breaking boundaries-coagulation and fibrinolysis at the neurovascular interface. Front. Cell Neurosci. 2015; 9: 354. doi: 10.3389/fncel.2015.00354
  49. Shi Y., Wardlaw J.M. Update on cerebral small vessel disease: a dynamic whole-brain disease. Stroke Vascular Neurol. 2016; 1(3): 83–92. doi: 10.1136/svn-2016-000035

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Neuropsychological assessment and CI severity and type assessment.

Download (291KB)
3. Fig. 2. Multimodal MRI scanning algorithm.

Download (438KB)
4. Fig. 3. The flowchart of cSVD patient selection for follow-up.

Download (330KB)
5. Fig. 4. CI severity and types based on follow-up.

Download (131KB)

Copyright (c) 2022 Dobrynina L.A., Gadzhieva Z.S., Kremneva E.I., Shamtieva K.V., Tsypushtanova M.M., Makarova A.G., Trubitsyna V.V., Bitsieva E.T., Filatov A.S., Byrochkina A.A., Krotenkova M.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies