The dynamics of neurophysiological signs of segmental and suprasegmental motor conduction at patients with myelopathy and cerebral stroke

Cover Page

Cite item

Full Text

Abstract

Introduction: The damaged axons of the central nervous system (CNS) of adults, cause severe and non treatable functional disorders as a consequence of the inability of the CNS unlike the peripheral nervous system repair damaged nerve fibers. Embryonic axons of the central nervous system are reduced, but the regenerative response of adult neurons becomes insolvent. Myelin and myelin-producing oligodendrocytes CNS axons are able to inhibit the growth of, respectively, the long-term preservation of myelin in the damaged area can inhibit axonal regeneration.Objective: To study the dynamics of axonal damage and mielinopatii on segmental and suprasegmental levels in patients with myelopathy and cerebral stroke.Methods: The study involved 340 patients with myelopathy of different levels (70% of the effects of spinal spinal injuries and 30% of nontraumatic myelopathy origin) - the main group, the comparison group consisted of 30 patients with cerebral hemispheric stroke. Status of segmental evaluated by electromyographic, suprasegmental - transcranial magnetic stimulation. The patients were examined twice: when applying for a rehabilitation course in the dynamics of 2-3 months.Results: Initial examination in the study group showed no significant differences in the severity and axon - myelinopathy with varying severity of neurological deficit. In a studyin dynamics in patients with improvement in functional status (for FIM scale) was found, significant (p<0.05) myelopathy of great severity at the segmental and suprasegmental levels of persisting in repeated studies (in patients without the dynamics on the scale of severity of FIM myelopathy with repeated surveys decreased). For patients with functional impairment revealed significantly greater (p<0.05) axonopathy severity and significantly (p<0.05) lower severity myelopathic changes. Similar changes were found in patients with stroke: when examining the dynamics in patients with a better recovery (Rankin Scale) found lower severity of axonal and large - myelopathic changes.Conclusion: The CNS lesions observed increase in myelopathic changes in segmental and suprasegmental level, the re-testing of patients with improvement in functional status, and in patients with deterioration of functional capacity, on the contrary, - reduced severity of myelopathy.

About the authors

E. A Kovrazhkina

N.I.Pirogov Russian National Research Medical University of the Ministry of Health of the Russian Federation

Email: elekov2@yandex.ru
канд. мед. наук, ст. науч. сотр. НИИ цереброваскулярной патологии и инсульта ГБОУ ВПО РНИМУ им. Н.И.Пирогова 117997, Russian Federation, Moscow, ul. Ostrovitianova, d. 1

L. V Stahovskaya

N.I.Pirogov Russian National Research Medical University of the Ministry of Health of the Russian Federation

д-р мед. наук, проф., дир. НИИ цереброваскулярной патологии и инсульта ГБОУ ВПО РНИМУ им. Н.И.Пирогова 117997, Russian Federation, Moscow, ul. Ostrovitianova, d. 1

O. D Razinskaya

N.I.Pirogov Russian National Research Medical University of the Ministry of Health of the Russian Federation

аспирант ГБОУ ВПО РНИМУ им. Н.И. Пирогова 117997, Russian Federation, Moscow, ul. Ostrovitianova, d. 1

References

  1. Морозов И.Н., Млявых С.Г. Эпидемиология позвоночно - спинномозговой травмы (обзор). Мед. альманах. 2011; 4 (7): 157-9.
  2. Миронов Е.М. Анализ первичной инвалидности среди больных с последствиями позвоночно - спинномозговой травмы. Медико - социальная экспертиза и реабилитация. М.: Медицина, 2004; 1: 33-4.
  3. Кондаков Е.Н., Симонова И.А., Поляков И.В. Эпидемиология тpавм позвоночника и спинного мозга в Санкт-Петеpбуpге. Вопр. нейрохирургии им. Н.Н.Бурденко. 2002; 2: 34.
  4. Акшулаков С.К., Керимбаев Т.Т. Эпидемиология травм позвоночника и спинного мозга. Материалы III съезда нейрохирургов России. Спб., 2002; с. 182.
  5. Иванова Г.Е., Крылов В.В., Цикунов М.Б. и др. Реабилитация больных с травматической болезнью спинного мозга. М., 2010.
  6. Стопоров А.Г. Некоторые аспекты интегральной оценки общей компенсации больных, перенесших позвоночно - спинномозговую травму. Вестн. физиотерапии и курортологии. 2007; 2: 172-7.
  7. Шевелев И.Н., Басков А.В., Яриков Д.Е., Борщенко И.А. Восстановление функции спинного мозга: современные возможности и перспективы исследования. Вопр. нейрохирургии. 2000; 3.
  8. Борщенко И.А., Басков А.В., Коршунов А.Г., Сатанова Ф.С. Некоторые аспекты патофизиологии травматического повреждения и регенерации спинного мозга. Вопр. нейрохирургии. 2000; 2.
  9. Goldberg J, Barres B. The relationship between neuronal survival and regeneration. Annu Rev Neurosci 2000; 23: 579-612.
  10. Stoll G, Jander S, Myers R. Degeneration and regeneration on the peripheral nervous system: from Augustus Waller’s observations to neuroinglammation. J Peripher Nevr Syst 2002; 7: 13-27.
  11. Broude E, Mc Atee M, Kelley M, Bregman B. c-Jun expression in adult rat dorsal root ganglion neurons: differential response after central or peripheral axonotomy. Exp Neurol 1997; 148: 367-77.
  12. Schwaiger F, Hager G, Schmitt A et al. Peripheral but not central axonotomy induces changes in Janus kinases (JAK) and signal transduces and activators of transcription (STAT). Eur J Neurosci 2000; 12: 1165-76.
  13. Dusart L, Airaksinen M, Sotelo C. Purkinje cell survival and axonal regeneration are age dependent: an in vitro study. J Neurosci 1997; 17: 3710-26.
  14. Gianola S, Rossi F. Evolution of the Purkije cell rwsronse to injuri and regenerative potential during postnatal development of the rat cerebellum. J Comp Neurol 2001; 430: 101-17.
  15. Steeves J, Keirstead H, Ethell D et al. Permissive and restrictive periods for brainstem - spinal regeneration in the chick. Prog Brain Res 1994; 103: 243-62.
  16. Shamash S, Reichert F, Rotshenker S. The cytokine network of Wallerian degeneration: tumor necrosis facror - alpha, interleukin-1alpha and interleukin-1beta. J Neurosci 2002; 22: 3052-60.
  17. Stoll G, Jander S. The role of microglia and macrophages in the pathophysiology of the CNS. Prog Neurobiol 1999; 58: 233-47.
  18. George R, Griffin J. Delayed macrophage responses and myelin clearance during Wallerian degeneration in the central neurous system: the dorsal radiculotomi model. Exp Neurol 1994; 129: 225-36.
  19. Bandlow C, Loschinger J. Developmental changes in neuronal responsiveness to CNS myelin - associated neurite grown ingiditor NI-35/250. Eur J Neurosci 1997; 9: 2743-52.
  20. Caroni P, Schwab M. Two membrane protein fractions from rat central myelin with ingiitory properties for neurite growth and fibroblast spreading. J Cell Biol 1988; 106: 1281-8.
  21. Bernstein-Goral H, Bregman B. Spinal cord transplants support the regeneration of axonotomized neurons after spinal cord lessions at birth: a quantitative doublelabeling study. Exp Neurol 1993; 123: 118-32.
  22. Kalil K, Reh T. A light and electron microscopic study of regrowing pyramidal tract fibers. J Comp Neurol 1982; 211: 265-75.
  23. Saunders N., Kitchener P., Knott G et al. Development of walking, swimming and neuronal connections after complete spinal cord transection in neonatal opossum, Monodelphisdomestica. J Neurosci 1998; 18: 339-55.
  24. Young W. Strategies for the development of new and better farmacogical treatment for acute spinal cord injury. In: F.G.Seil. Advances in neurology. New York: Raven Press, 1993; p. 249-56.
  25. Yao L, Moody C, Schonherr E et al. Indentification of the proteoglycan versican in aorta and smoth musle cells by DNA sequence analysis, in situ hybridization and immunohistochemistry. Mattrix Biol 1994; 14: 213-25.
  26. Sugiura Y, Mori N. SCG10 exppresses growth - associated manner in developing rat brain, but shows a different pattern to p19/stathmin or GAP-43. Brain Res Dev Brain Res 1995; 90: 73-91.
  27. Mori N, Morii H. SCGIO-related neuronal growth - associated proteins in neural development, plasticity, degeneration and aging. J Neurosci Res 2002; 70: 264-73.
  28. Bandlow C, Zachleder T, Schwab M. Oligodendrocytes arrest neurite grown by contact ingibition. J Neurosci 1990; 10: 3837-48.
  29. Bouslama-Oueghlani L, Wehrle R, Sotelo C, Dusart I. The developmental loss of the ability of Purkinje cells to regenerate their axons occurs in the absence of myelin: an in vitro model to prevent myelination. J Neurosci 2003; 23: 8318-29.
  30. Colemann M, Perry V. Axon pathology in neurological disease: a neglected therapeutic target. Trends Neurocsci 2002; 25: 532-7.
  31. Kottis V, Thibaut P, Micol D. Oligodendrocyte - myelin glycoprotein (OMgp) is an inhibitor of neurite outgrowth. J Neurochem 2002; 82: 1566-9.
  32. Fujita Y, Yamashita T. Axon growth inhibition by RhoA/ROCK in the central nervous system. Front Neurosci 2014; 8: 338.
  33. Челышев Ю.Л., Викторов И.В. Клеточные технологии ремиелинизации при травме спинного мозга. Неврол. вестн. 2009; XLI (1): 49-55.
  34. Baldwin K, Giger R. Insights into the physiological role of CNS regeneration inhibitors. Front Mol Neurosci 2015; 11; 8: 23.
  35. Barbay S, Plautz E, Zoubina et al. Effects of postinfarct myelin - associated glycoprotein antibody treatment on motor recovery and motor map plasticity in squirrel monkeys. Stroke 2015; 46 (6): 1620-5.
  36. Fagoe N, Van Heest J, Verhaagen J. Spinal cord injury and the neuron - intrinsic regeneration - associated gene program. Neuromolecular Med 2014; 16 (4): 799-813.
  37. Geoffroy C, Lorenzana A.O, Kwan J et al. Effects of PTEN and NogoCodeletion on Corticospinal Axon Sprouting and Regeneration in Mice. J Neurosci 2015; 35 (16): 6413-28.
  38. Goldshmit Y, Frisca F, Kaslin J. et al. Decreased anti - regenerative effects after spinal cord injury in spry4-/- mice. Neuroscience 2015; 287C: 104-12.
  39. Vajda F, Jordi W, Dalkara D. Cell type - specific Nogo-A gene ablation promotes axonal regeneration in the injured adult optic nerve. Cell Death Differ 2015; 22 (2): 323-35.

Copyright (c) 2016 Consilium Medicum

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies