Macrophages in the skin: role in physiological processes and in response to cosmetic procedures. A review

Cover Page

Cite item

Full Text

Abstract

Macrophages are a heterogeneous population of immune cells derived primarily from bone marrow monocytes and embryonic yolk sac erythromyeloid progenitors, capable of altering their phenotype and functions depending on the microenvironment. This article presents a review of current knowledge on the origin, structure, and function of dermal macrophages, including historical data from the first observations by I.A.E. Goeze (1777), confirmed by W.F. von Gleichen-Russwurm, the term "Fresszellen" by K. Klaus, and the phagocytic theory of I.I. Mechnikov (1882–1884) to the M1/M2 dichotomy of Mills et al. (early 2000s). This paper summarizes literature data on the human monocyte-macrophage system in both normal and pathological conditions, taking into account the heterogeneity of classical monocytes as precursors of tissue macrophages, non-classical monocytes for endothelial homeostasis, intermediate and organ-specific macrophages (Langerhans cells in the epidermis, microglia in the central nervous system, and Kupffer cells in the liver). Data are presented on various macrophage phenotypes, from proinflammatory M1 with glycolytic metabolism and inducible nitric oxide synthase to reparative M2 with mitochondrial respiration and arginase-1, and their involvement in immune surveillance, skin protection, regeneration, angiogenesis, and tissue remodeling. The article presents an analysis of the role of macrophages in response to cosmetic procedures: ablative and non-ablative lasers 10600 and 1550 nm, microneedle RF, SMAS-lifting, injections of polylactic acid, calcium hydroxyapatite, the role of Langerhans cells in response to external stimuli of ultraviolet radiation, cosmetics, etc., the role of macrophages in the development of fibrosis M1-initiation, M2a-proliferation, M2c-resolution, SPP1+ with CXCL4 from platelets, PRP-hypothesis, regulation of the adipocyte population in dermal-associated adipose tissue dWAT, elimination of biomaterials. Attention is paid to resident dermal macrophages located perivascularly and perineurally in the papillary and reticular layers, their ability to proliferate in situ to maintain homeostasis, the synthesis of collagenase enzymes, elastase, hyaluronidase and cytokines that regulate the functions of dermal and epidermal cells.

About the authors

Lesia V. Kirsanova

Pavlov First Saint Petersburg State Medical University; Galaxy Beauty Institute; Candela Cosmetology Clinic

Author for correspondence.
Email: lvkirsanova@yandex.ru
ORCID iD: 0000-0003-4038-5630

Cand. Sci. (Med.)

Russian Federation, Saint Petersburg; Saint Petersburg; Saint Petersburg

Elena R. Araviiskaia

Pavlov First Saint Petersburg State Medical University; Galaxy Beauty Institute

Email: lvkirsanova@yandex.ru
ORCID iD: 0000-0002-6378-8582
SPIN-code: 9094-9688
Scopus Author ID: 56730990100
ResearcherId: AAL-7772-2020

D. Sci. (Med.), Prof.

Russian Federation, Saint Petersburg; Saint Petersburg

Margarita G. Rybakova

Pavlov First Saint Petersburg State Medical University

Email: lvkirsanova@yandex.ru
ORCID iD: 0000-0002-8404-1859

D. Sci. (Med.)

Russian Federation, Saint Petersburg

Evgeny V. Sokolovskiy

Pavlov First Saint Petersburg State Medical University

Email: lvkirsanova@yandex.ru
ORCID iD: 0000-0001-7610-6061
SPIN-code: 6807-7137

D. Sci. (Med.)

Russian Federation, Saint Petersburg

Alexey I. Bogatenkov

Galaxy Beauty Institute

Email: lvkirsanova@yandex.ru
ORCID iD: 0000-0001-8433-5446

Chief doctor

Russian Federation, Saint Petersburg

References

  1. Stossel TP. On the crawling of animal cells. Science. 1993;260(5111):1086-94. doi: 10.1126/science.8493552
  2. Ельчанинов А.В., Фатхудинов Т.Х. Макрофаги. М.: ГЭОТАР-Медиа, 2023. doi: 10.33029/9704-7780-9-EAM-2023-1-208
  3. Guan F, Wang R, Yi Z, et al. Tissue macrophages: origin, heterogenity, biological functions, diseases and therapeutic targets. Signal Transduct Target Ther. 2025;10(1):93. doi: 10.1038/s41392-025-02124-y
  4. Быков В.Л. Цитология и общая гистология. Функциональная морфология клеток и тканей человека. Учебник для студентов медицинских институтов. СПб: СОТИС, 2002 [Bykov VL. Tsitologiia i obshchaia gistologiia. Funktsionalnaia morfologiia kletok i tkanei cheloveka. Uchebnik dlia studentov meditsinskikh institutov. Saint Petersburg: SOTIS, 2002 (in Russian)].
  5. Taguchi K, Fukunaga A, Ogura K, Nishigori C. The role of epidermal Langerhans cells in NB-UVB-induced immunosuppression. Kobe J Med Sci. 2013;59(1):E1-9.
  6. Hoeffel G, Ginhoux F. Fetal monocytes and the origins of tissue-resident macrophages. Cell Immunol. 2018;330:5-15. doi: 10.1016/j.cellimm.2018.0
  7. Coillard A, Segura E. In vivo Differentiation of Human Monocytes. Front Immunol. 2019;10:1907. doi: 10.3389/fimmu.2019.01907
  8. Shapouri-Moghaddam A, Mohammadian S, Vazini H, et al. Macrophage plasticity, polarization, and function in health and disease. J Cell Physiol. 2018;233(9):6425-40. doi: 10.1002/jcp.26429
  9. Mills CD, Kincaid K, Alt JM, et al. M-1/M-2 macrophages and the Th1/Th2 paradigm. J Immunol. 2000;164(12):6166-73. doi: 10.4049/jimmunol.164.12.6166
  10. Mantovani A, Sica A. Macrophages, innate immunity and cancer: balance, tolerance, and diversity. Curr Opin Immunol. 2010;22(2):231-7. doi: 10.1016/j.coi.2010.01.009
  11. Nathan CF, Murray HW, Wiebe ME, Rubin BY. Identification of interferon-gamma as the lymphokine that activates human macrophage oxidative metabolism and antimicrobial activity. J Exp Med. 1983;158(3):670-89. doi: 10.1084/jem.158.3.670
  12. Lauterbach MA, Hanke JE, Serefidou M, et al. Toll-like receptor signaling rewires macrophage metabolism and promotes histone acetylation via ATP-citrate lyase. Immunity. 2019;51(6):997-1011.e7. doi: 10.1016/j.immuni.2019.11.009
  13. Murray PJ, Allen JE, Biswas SK, et al. Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity. 2014;41(1):14-20. doi: 10.1016/j.immuni.2014.06.008
  14. Bailey JD, Diotallevi M, Nicol T, et al. Nitric oxide modulates metabolic remodeling in inflammatory macrophages through TCA cycle regulation and itaconate accumulation. Cell Rep. 2019;28(1):218-30.e7. doi: 10.1016/j.celrep.2019.06.018
  15. Van den Bossche J, Baardman J, Otto NA, et al. Mitochondrial dysfunction prevents repolarization of inflammatory macrophages. Cell Rep. 2016;17(3):684-96. doi: 10.1016/j.celrep.2016.09.008
  16. Wculek SK, Dunphy G, Heras-Murillo I, et al. Metabolism of tissue macrophages in homeostasis and pathology. Cell Mol Immunol. 2022;19(3):384-408. doi: 10.1038/s41423-021-00791-9.2021
  17. Yunna C, Mengru H, Lei W, Weidong C. Macrophage M1/M2 polarization. Eur J Pharmacol. 2020;877:173090. doi: 10.1016/j.ejphar.2020.173090
  18. Oren E, Banerji A, Camargo CJr. Vitamin D and atopic disorders in an obese population screened for vitamin D deficiency. J Allergy Clin Immunol. 2008;121(2):533-4. doi: 10.1016/j.jaci.2007.11.005
  19. Stein M, Keshav S, Harris N, Gordon S. Interleukin 4 potently enhances murine macrophage mannose receptor activity: a marker of alternative immunologic macrophage activation. J Exp Med. 1992;176(1):287-92. doi: 10.1084/jem.176.1.287
  20. Vats D, Mukundan L, Odegaard JI, et al. Oxidative metabolism and PGC-1β attenuate macrophage-mediated inflammation. Cell Metab. 2006;4(1):13-24. doi: 10.1016/j.cmet.2006.05.011
  21. Mantovani A, Sozzani S, Locati M, et al. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol. 2002;23(11):549-55. doi: 10.1016/S1471-4906(02)02302-5
  22. Gessain G, Bleriot C, Ginhoux F. Non-genetic Heterogeneity of Macrophages in Diseases – A Medical Perspective. Front Cell Dev Biol. 2020;8:613116. doi: 10.3389/fcell.2020.613116
  23. Cook DN, Nakano H. A new wrinkle for skin dendritic cell migration. Blood. 2021;137(20):2716-7. doi: 10.1182/blood.2020010619
  24. Ginhoux F, Schultze JL, Murray PJ, et al. New insights into the multidimensional concept of macrophage ontogeny, activation and function. Nat Immunol. 2016;17(1):34-40. doi: 10.1038/ni.3324
  25. Yu Y, Yue Z, Xu M, et al. Macrophages play a key role in tissue repair and regeneration. PeerJ. 2022;10:e14053. doi: 10.7717/peerj.14053
  26. Jain N, Moeller J, Vogel V. Mechanobiology of Macrophages: How Physical Factors Coregulate Macrophage Plasticity and Phagocytosis. Annu Rev Biomed Eng. 2019;21:267-97. doi: 10.1146/annurev-bioeng-062117-121224
  27. Hatakeyama M, Fukunaga A, Washio K, et al. Anti-Inflammatory Role of Langerhans Cells and Apoptotic Keratinocytes in Ultraviolet-B-Induced Cutaneous Inflammation. J Immunol. 2017;199(8):2937-47. doi: 10.4049/jimmunol.1601681
  28. Wang K, Wen D, Xu X, et al. Extracellular matrix stiffness – The central cue for skin fibrosis. Front Mol Biosci. 2023;10:1132353. doi: 10.3389/fmolb.2023.1132353
  29. Varga J, Lafyatis R. Etiology and pathogenesis of systemic sclerosis. Rheumatology: Sixth Edition. Elsevier Inc, 2014.
  30. Adhyatmika A, Putri KSS, Beljaars L, Melgert BN. The elusive antifibrotic macrophage. Front Med. 2015;2:81. doi: 10.3389/fmed.2015.00081
  31. Максимова А.А., Шевела Е.Я., Сахно Л.В., и др. Продукция факторов, участвующих в регуляции фиброза, различными типами макрофагов человека. Медицинская иммунология. 2020;22(4):625-32 [Maksimova AA, Shevela EYa, Sakhno LV. Production of factors involved into fibrosis regulation by various types of human macrophages. Medical Immunology. 2020;22(4):625-32 (in Russian)]. doi: 10.15789/1563-0625-POF-1954
  32. Craig VJ, Zhang L, Hagood JS, Owen CA. Matrix metalloproteinases as therapeutic targets for idiopathic pulmonary fibrosis. Am J Respir Cell Mol Biol. 2015;53(5):585-600. doi: 10.1165/rcmb.2015-0020TR
  33. Gensel JC, Zhang B. Macrophage activation and its role in repair and pathology after spinal cord injury. Brain Res. 2015;1619:1-11. doi: 10.1016/j.brainres.2014.12.045
  34. Meng XM, Nikolic-Paterson DJ, Lan HY. TGF-β: the master regulator of fibrosis. Nat Rev Nephrol. 2016;12(6):325-38. doi: 10.1038/nrneph.2016.48
  35. Thomas AW, Kevin MV. Macrophages in Tissue Repair, Regeneration, and Fibrosis. Immunity. 2016;44(3):450-62. doi: 10.1016/j.immuni.2016.02.015.
  36. Hoeft K, Schaefer GJL, Kim H, et al. Platelet-instructed SPP1 + macrophages drive myofibroblast activation in fibrosis in a CXCL4-dependent manner. Cell Rep. 2023;42(2):112131. doi: 10.1016/j.celrep.2023.112131
  37. Liu M, Lu F, Feng J. Aging and homeostasis of the hypodermis in the age-related deterioration of skin function. Cell Death Dis. 2024;15(6):443. doi: 10.1038/s41419-024-06818-z
  38. Li Y, Long J, Zhang Z, Yin W. Insights into the unique roles of dermal white adipose tissue (dWAT) in wound healing. Front Physiol. 2024;15:1346612. doi: 10.3389/fphys.2024.1346612
  39. Boschi F, Negri A, Conti A, et al. The human dermal white adipose tissue (dWAT) morphology: A multimodal imaging approach. Ann Anat. 2024;255:152289. doi: 10.1016/j.aanat.2024.152289
  40. Park C, Jarnagin H, Whitfield M, Pioli P. Macrophages Regulate Adipocyte Differentiation and Proliferation in Skin Fibrosis [abstract]. Arthritis Rheumatol. 2023;75 (suppl 9). Available at: https://acrabstracts.org/abstract/macrophages-regulate-adipocyte-differentiation-and-proliferation-in-skin-fibrosis/ Accessed: 05.08.2025.
  41. Мураков С.В., Разумовская Е.А., Захаров Д.Ю., и др. Применение поли-L-молочной кислоты в эстетической медицине. Пластическая хирургия и эстетическая медицина. 2023;4:101-11 [Murakov SV, Razumovskaya EA, Zakharov DYu, et al. Poly-L-lactic acid in aesthetic medicine. Plastic Surgery and Aesthetic Medicine. 2023;(4):101-11 (in Russian)]. doi: 10.17116/plast.hirurgia2023041101
  42. Sheikh Z, Brooks P, Barzilay O. Macrophages, Foreign Body Giant Cells and Their Response to Implantable Biomaterials. Materials (Basel). 2015;8(9):5671-701. doi: 10.3390/ma8095269
  43. Baranov MV, Kumar M, Sacanna S, et al. Modulation of Immune Responses by Particle Size and Shape. Front Immunol. 2021;11:607945. doi: 10.3389/fimmu.2020.607945
  44. Anderson JM, Rodriguez A, Chang DT. Foreign Body Reaction to Biomaterials. Semin Immunol. 2008;20(2):86-100. doi: 10.1016/j.smim.2007.11.004
  45. Hu WJ, Eaton JW, Ugarova TP, Tang L. Molecular basis of biomaterial-mediated foreign body reactions. Blood. 2001;98(4):1231-8. doi: 10.1182/blood.v98.4.1231
  46. Klopfleisch R, Jung F. The pathology of the foreign body reaction against biomaterials. J Biomed Mater Res A. 2017;105(3):927-40. doi: 10.1002/jbm.a.35958
  47. Fitzgerald R, Lawrence MB, David JG, et al. Physiochemical Characteristics of Poly-L-Lactic Acid (PLLA). FACS. Aesthet Surg J. 2018;38(suppl_1):S13-7. doi: 10.1093/asj/sjy01247
  48. Lemperle G, Morhenn V, Charrier U. Human Histology and Persistence of Various Injectable Filler Substances for Soft Tissue Augmentation. Aesth Plast Surg. 2003;27(5):354-66. doi: 10.1007/s00266-003-3022-1
  49. Ray S, Ta H. Investigating the Effect of Biomaterials Such as Poly-(l-Lactic Acid) Particles on Collagen Synthesis In Vitro: Method Is Matter. J Funct Biomater. 2020;11(3):51. doi: 10.3390/jfb11030051
  50. Champion JA, Walker A, Mitragotri S. Role of particle size in phagocytosis of polymeric microspheres. Pharm Res. 2008;25(8):1815-21. doi: 10.1007/s11095-008-9562-y
  51. Champion JA, Mitragotri S. Shape induced inhibition of phagocytosis of polymer particles. Pharm Res. 2009;26(1):244-9. doi: 10.1007/s11095-008-9626-z
  52. Sharma G, Valenta DT, Altman Y, et al. Polymer particle shape independently influences binding and internalization by macrophages. J Control Release. 2010;147(3):408-12. doi: 10.1016/j.jconrel.2010.07.116
  53. Doshi N, Mitragotri S. Macrophages recognize size and shape of their targets. PLoS One. 2010;5(4):e10051. doi: 10.1371/journal.pone.0010051
  54. Могильная Г.М., Фомичева Е.В., Блатт Ю.Е. Иммуногистохимический профиль дермы при введении полимолочной кислоты. Морфологические ведомости. 2020;28(1):23-29 [Mogilnaya GM, Fomicheva EV, Blatt YuE. Immunohistochemical profile of the dermis at the injection of polylactic acid. Morphological newsletter. 2020;28(1):23-9 (in Russian)]. doi: 10.20340/mv-mn.2020.28(1):23-9

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Kirsanova L.V., Araviiskaia E.R., Rybakova M.G., Sokolovskiy E.V., Bogatenkov A.I. Consilium Medicum

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).