Neutrophilic asthma: current prospects. A review

Cover Page

Cite item

Full Text

Abstract

Asthma, caused by eosinophilic inflammation of the airways, is caused by exposure to allergen, is well treated with glucocorticostroids or monoclonal antibodies to interleukin-4 and 5, but some patients do not develop an answer to this therapy. The given type of asthma is classified as non-eosinophilic asthma. Depending on the proportion of infiltrating cells, non-eosinophilic asthma can be divided into neutrophil asthma (NA), mixed granulocytic asthma, and small ranulocytic asthma. It should be noted that the NA criteria are not clearly defined. For example, in one study, inflammation is thought to be neutrophilic with less than 2.5% of eosinophils and more than 65% of neutrophils in the sputum, while in another study 61% of neutrophils and more are thought to be. The role of neutrophils in asthma has been studied, but there is debate about the presence of NA. Several studies have shown that neutrophilic inflammation is associated with severe asthma and the risk of increased asthma. The article considers pathogenesis, definition, biomarkers NA and potential therapy NA.

About the authors

Viliya V. Gaynitdinova

Sechenov First Moscow State Medical University (Sechenov University)

Author for correspondence.
Email: ivv_08@mail.ru
ORCID iD: 0000-0001-9928-926X

D. Sci. (Med.)

Russian Federation, Moscow

Zamira M. Merzhoeva

Sechenov First Moscow State Medical University (Sechenov University)

Email: zamira.merzoeva@bk.ru
ORCID iD: 0000-0002-3174-5000

Cand. Sci. (Med.)

Russian Federation, Moscow

Alena A. Aleksandrova

Central Clinical Hospital with a Polyclinic

Email: alenchik2804@mail.ru
ORCID iD: 0000-0003-2334-0801

pulmonologist

Russian Federation, Moscow

References

  1. Global Initiative for Asthma. 2023 GINA Report, Global Strategy for Asthma Management and Prevention. Available at: https://ginasthma.org/2023-gina-main-report. Accessed: 25.01.2024.
  2. Gao H, Ying S, Dai Y. Pathological Roles of Neutrophil-Mediated Inflammation in Asthma and Its Potential for Therapy as a Target. J Immunol Res. 2017;2017:3743048. doi: 10.1155/2017/3743048
  3. Ненашева Н.М. Т2-бронхиальная астма: характеристика эндотипа и биомаркеры. Пульмонология. 2019;29(2):216-28 [Nenasheva NM. Nenasheva N.M. T2-asthma, endotype characteristics and biomarkers. Pulmonologiya. 2019;29(2):216-28 (in Russian)]. doi: 10.18093/0869-0189-2019-29-2-216-228
  4. Liu W, Chen H, Zhang D, et al. A retrospective study of clinical features of cough variant asthma in Chinese adults. Allergy Asthma Clin Immunol. 2019;15:3. doi: 10.1186/s13223-019-0318-5
  5. Taylor SL, Leong LEX, Choo JM, et al. Inflammatory phenotypes in patients with severe asthma are associated with distinct airway microbiology. J Allergy Clin Immunol. 2018;141(1):94-103.e15. doi: 10.1016/j.jaci.2017.03.044
  6. Crisford H, Sapey E, Rogers GB, et al. Neutrophils in asthma: the good, the bad and the bacteria. Thorax. 2021;76(8):835-44. doi: 10.1136/thoraxjnl-2020-215986
  7. Saffar AS, Ashdown H, Gounni AS. The molecular mechanisms of glucocorticoids-mediated neutrophil survival. Curr Drug Targets. 2011;12(4):556-62. doi: 10.2174/138945011794751555
  8. Berry M, Morgan A, Shaw DE, et al. Pathological features and inhaled corticosteroid response of eosinophilic and non-eosinophilic asthma. Thorax. 2007;62(12):1043-9. doi: 10.1136/thx.2006.073429
  9. Mincham KT, Bruno N, Singanayagam A, Snelgrove RJ. Our evolving view of neutrophils in defining the pathology of chronic lung disease. Immunology. 2021;164(4):701-21. doi: 10.1111/imm.13419
  10. Schleich F, Brusselle G, Louis R, et al. Heterogeneity of phenotypes in severe asthmatics. The Belgian Severe Asthma Registry (BSAR). Respir Med. 2014;108(12):1723-32. doi: 10.1016/j.rmed.2014.10.007
  11. Grunwell JR, Stephenson ST, Tirouvanziam R, et al. Children with Neutrophil-Predominant Severe Asthma Have Proinflammatory Neutrophils With Enhanced Survival and Impaired Clearance. J Allergy Clin Immunol Pract. 2019;7(2):516-25.e6. doi: 10.1016/j.jaip.2018.08.024
  12. Kikuchi I, Kikuchi S, Kobayashi T, et al. Eosinophil trans-basement membrane migration induced by interleukin-8 and neutrophils. Am J Respir Cell Mol Biol. 2006;34(6):760-5. doi: 10.1165/rcmb.2005-0303OC
  13. Lavinskiene S, Bajoriuniene I, Malakauskas K, et al. Sputum neutrophil count after bronchial allergen challenge is related to peripheral blood neutrophil chemotaxis in asthma patients. Inflamm Res. 2014;63(11):951-9. doi: 10.1007/s00011-014-0770-0
  14. Gauvreau GM, Sehmi R, Ambrose CS, Griffiths JM. Thymic stromal lymphopoietin: its role and potential as a therapeutic target in asthma. Expert Opin Ther Targets. 2020;24(8):777-92. doi: 10.1080/14728222.2020.1783242
  15. Tanaka J, Watanabe N, Kido M, et al. Human TSLP and TLR3 ligands promote differentiation of Th17 cells with a central memory phenotype under Th2-polarizing conditions. Clin Exp Allergy. 2009;39(1):89-100. doi: 10.1111/j.1365-2222.2008.03151.x
  16. Al-Ramli W, Préfontaine D, Chouiali F, et al. T(H)17-associated cytokines (IL-17A and IL-17F) in severe asthma. J Allergy Clin Immunol. 2009;123(5):1185-7. doi: 10.1016/j.jaci.2009.02.024
  17. Bullens DM, Truyen E, Coteur L, et al. IL-17 mRNA in sputum of asthmatic patients: linking T cell driven inflammation and granulocytic influx? Respir Res. 2006;7(1):135. doi: 10.1186/1465-9921-7-135
  18. Yang X, Li H, Ma Q, et al. Neutrophilic Asthma Is Associated with Increased Airway Bacterial Burden and Disordered Community Composition. Biomed Res Int. 2018;2018:9230234. doi: 10.1155/2018/9230234
  19. Kozik AJ, Huang YJ. The microbiome in asthma: Role in pathogenesis, phenotype, and response to treatment. Ann Allergy Asthma Immunol. 2019;122(3):270-5. doi: 10.1016/j.anai.2018.12.005
  20. Simpson JL, Daly J, Baines KJ, et al. Airway dysbiosis: Haemophilus influenzae and Tropheryma in poorly controlled asthma. Eur Respir J. 2016;47(3):792-800. doi: 10.1183/13993003.00405-2015
  21. Miethe S, Guarino M, Alhamdan F, et al. Effects of obesity on asthma: immunometabolic links. Pol Arch Intern Med. 2018;128(7-8):469-77. doi: 10.20452/pamw.4304
  22. Lindén A. Role of interleukin-17 and the neutrophil in asthma. Int Arch Allergy Immunol. 2001;126(3):179-84. doi: 10.1159/000049511
  23. Cardet JC, Ash S, Kusa T, et al. Insulin resistance modifies the association between obesity and current asthma in adults. Eur Respir J. 2016;48(2):403-10. doi: 10.1183/13993003.00246-2016
  24. Brinkmann V, Reichard U, Goosmann C, et al. Neutrophil extracellular traps kill bacteria. Science. 2004;303(5663):1532-5. doi: 10.1126/science.1092385
  25. Krishnamoorthy N, Douda DN, Brüggemann TR, et al. Neutrophil cytoplasts induce T(H)17 differentiation and skew inflammation toward neutrophilia in severe asthma. Sci Immunol. 2018;3(26):eaao4747. doi: 10.1126/sciimmunol.aao4747
  26. Lin J, Huang N, Li J, et al. Cross-reactive antibodies against dust mite-derived enolase induce neutrophilic airway inflammation. Eur Respir J. 2021;57(1) :1902375. doi: 10.1183/13993003.02375-2019
  27. Wu Q, Jiang D, Minor M, Chu HW. Electronic cigarette liquid increases inflammation and virus infection in primary human airway epithelial cells. PLoS One. 2014;9(9):e108342. doi: 10.1371/journal.pone.0108342
  28. Guarnieri M, Balmes JR. Outdoor air pollution and asthma. Lancet. 2014;383(9928):1581-92. doi: 10.1016/S0140-6736(14)60617-6
  29. Горбань В.В., Ковригина И.В., Горбань Е.В., и др. Синтропия бронхиальной астмы и гастро- эзофагеальной рефлюксной болезни: патогенетические особенности и возможности малоинвазивной диагностики на амбулаторном этапе. Южно-Российский журнал терапевтической практики. 2023;4(2):25-34 [Gorban VV, Kovrigina IV, Gorban EV, et al. Syntropy of bronchial asthma and gastroesophageal reflux disease: pathogenetic features and possibilities of minimally invasive diagnostics at the outpatient stage. South Russian Journal of Therapeutic Practice. 2023;4(2):25-34 (in Russian)]. doi: 10.21886/2712-8156-2023-4-2-25-34
  30. Simpson JL, Baines KJ, Ryan N, Gibson PG. Neutrophilic asthma is characterised by increased rhinosinusitis with sleep disturbance and GERD. Asian Pac J Allergy Immunol. 2014;32(1):66-74. doi: 10.12932/AP0322.32.1.2014
  31. James AJ, Reinius LE, Verhoek M, et al. Increased YKL-40 and Chitotriosidase in Asthma and Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med. 2016;193(2):131-42. doi: 10.1164/rccm.201504-0760OC
  32. Liu L, Zhang X, Liu Y, et al. Chitinase-like protein YKL-40 correlates with inflammatory phenotypes, anti-asthma responsiveness and future exacerbations. Respir Res. 2019;20(1):95. doi: 10.1186/s12931-019-1051-9
  33. Suzuki Y, Saito J, Munakata M, Shibata Y. Hydrogen sulfide as a novel biomarker of asthma and chronic obstructive pulmonary disease. Allergol Int. 2021;70(2):181-9. doi: 10.1016/j.alit.2020.10.003
  34. Hinks TSC, Brown T, Lau LCK, et al. Multidimensional endotyping in patients with severe asthma reveals inflammatory heterogeneity in matrix metalloproteinases and chitinase 3-like protein 1. J Allergy Clin Immunol. 2016;138(1):61-75. doi: 10.1016/j.jaci.2015.11.020
  35. Zhang XY, Simpson JL, Powell H, et al. Full blood count parameters for the detection of asthma inflammatory phenotypes. Clin Exp Allergy. 2014;44(9):1137-45. doi: 10.1111/cea.12345
  36. Backman H, Lindberg A, Hedman L, et al. FEV(1) decline in relation to blood eosinophils and neutrophils in a population-based asthma cohort. World Allergy Organ J. 2020;13(3):100110. doi: 10.1016/j.waojou.2020.100110
  37. Panganiban RP, Pinkerton MH, Maru SY, et al. Differential microRNA epression in asthma and the role of miR-1248 in regulation of IL-5. Am J Clin Exp Immunol. 2012;1(2):154-65.
  38. Cañas JA, Rodrigo-Muñoz JM, Sastre B, et al. MicroRNAs as Potential Regulators of Immune Response Networks in Asthma and Chronic Obstructive Pulmonary Disease. Front Immunol. 2020;11:608666. doi: 10.3389/fimmu.2020.608666
  39. Gibson PG, Yang IA, Upham JW, et al. Effect of azithromycin on asthma exacerbations and quality of life in adults with persistent uncontrolled asthma (AMAZES): a randomised, double-blind, placebo-controlled trial. Lancet. 2017;390(10095):659-68. doi: 10.1016/S0140-6736(17)31281-3
  40. Brusselle GG, Vanderstichele C, Jordens P, et al. Azithromycin for prevention of exacerbations in severe asthma (AZISAST): a multicentre randomised double-blind placebo-controlled trial. Thorax. 2013;68(4):322-9. doi: 10.1136/thoraxjnl-2012-202698
  41. Bateman ED, Goehring UM, Richard F, Watz H. Roflumilast combined with montelukast versus montelukast alone as add-on treatment in patients with moderate-to-severe asthma. J Allergy Clin Immunol. 2016;138(1):142-9.e8. doi: 10.1016/j.jaci.2015.11.035
  42. Luo J, Yang L, Yang J, et al. Efficacy and safety of phosphodiesterase 4 inhibitors in patients with asthma: A systematic review and meta-analysis. Respirology. 2018;23(5):467-77. doi: 10.1111/resp.13276
  43. Toumpanakis D, Loverdos K, Tzouda V, et al. Tiotropium bromide exerts anti-inflammatory effects during resistive breathing, an experimental model of severe airway obstruction. Int J Chron Obstruct Pulmon Dis. 2017;12:2207-20. doi: 10.2147/COPD.S137587
  44. Iwamoto H, Yokoyama A, Shiota N, et al. Tiotropium bromide is effective for severe asthma with noneosinophilic phenotype. Eur Respir J. 2008;31(6):1379-80. doi: 10.1183/09031936.00014108
  45. Nair P, Gaga M, Zervas E, et al. Safety and efficacy of a CXCR2 antagonist in patients with severe asthma and sputum neutrophils: a randomized, placebo-controlled clinical trial. Clin Exp Allergy. 2012;42(7):1097-103. doi: 10.1111/j.1365-2222.2012.04014.x
  46. Aвдеев С.Н., Ненашева Н.М., Жуденков К.В., и др. Распространенность, заболеваемость, фенотипы и другие характеристики тяжелой бронхиальной астмы в Российской Федерации. Пульмонология. 2018;28(3):341-58 [Avdeev SN, Nenasheva NM, Zhudenkov KV, et al. Prevalence, morbidity, phenotypes and other characteristics of severe bronchial asthma in Russian Federation. Pulmonologiya. 2018;28(3):341-58 (in Russian)]. doi: 10.18093/0869-0189-2018-28-3-341-358
  47. Venkataramani S, Low S, Weigle B, et al. Design and characterization of Zweimab and Doppelmab, high affinity dual antagonistic anti-TSLP/IL13 bispecific antibodies. Biochem Biophys Res Commun. 2018;504(1):19-24. doi: 10.1016/j.bbrc.2018.08.064
  48. Revez JA, Bain LM, Watson RM, et al. Effects of interleukin-6 receptor blockade on allergen-induced airway responses in mild asthmatics. Clin Transl Immunology. 2019;8(6):e1044. doi: 10.1002/cti2.1044
  49. Berry MA, Hargadon B, Shelley M, et al. Evidence of a role of tumor necrosis factor alpha in refractory asthma. N Engl J Med. 2006;354(7):697-708. doi: 10.1056/NEJMoa050580
  50. Brightling CE, Nair P, Cousins DJ, et al. Risankizumab in Severe Asthma – A Phase 2a, Placebo-Controlled Trial. N Engl J Med. 2021;385(18):1669-79. doi: 10.1056/NEJMoa2030880

Copyright (c) 2024 Consilium Medicum

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies