Vitamin-mineral complexes to help adult patients frequently suffering with acute respiratory viral infections: A review

Cover Page

Cite item

Full Text

Abstract

Acute respiratory viral infections are widespread diseases, poorly controlled infections and are characterized by moderately pronounced constant growth. The use of vitamin-mineral complexes (nutraceuticals) for nonspecific prevention and treatment of acute respiratory viral infections is experiencing a “second youth” thanks to new data accumulated during the novel coronavirus infection (COVID-19) pandemic. As part of the review, we examined the possible impact of deficiency of the microelements selenium and zinc, vitamins A, E and C on various aspects of the course of ARVI: nonspecific prevention, treatment and rehabilitation. We searched for relevant sources in the PubMed and Scopus information databases, including the time period up to 04.07.2024. The presence in the arsenal of a practicing physician of 2 forms of the vitamin-mineral complex Selzinc® at the outpatient stage of medical care will increase the effectiveness of nonspecific prevention of ARVI in the pre-epidemic period, especially in “frequently ill adults with ARVI,” as well as the treatment of ARVI as adjuvant therapy and subsequent rehabilitation.

About the authors

Dmitry I. Trukhan

Omsk State Medical University

Author for correspondence.
Email: dmitry_trukhan@mail.ru
ORCID iD: 0000-0002-1597-1876

D. Sci. (Med.), Assoc. Prof.

Russian Federation, Omsk

Natalya V. Bagisheva

Omsk State Medical University

Email: ppi100@mail.ru
ORCID iD: 0000-0003-3668-1023

D. Sci. (Med.)

Russian Federation, Omsk

References

  1. Трухан Д.И., Филимонов С.Н. Дифференциальный диагноз основных пульмонологических симптомов и синдромов. СПб: СпецЛит, 2019. Режим доступа: https://www.elibrary.ru/item.asp?id=41392166. Ссылка активна на 15.03.2024 [Trukhan DI, Filimonov SN. Differencialnyi diagnoz osnovnyh pul`monologicheskih simptomov i sindromov. Saint-Petersburg: SpeczLit, 2019. Available at: https://www.elibrary.ru/item.asp?id=41392166/ Accessed: 15.03.2024 (in Russian)].
  2. Трухан Д.И., Викторова И.А., Иванова Д.С., Голошубина В.В. Острые респираторные вирусные инфекции: возможности витаминно-минеральных комплексов в лечении, профилактике и реабилитации. Фарматека. 2023;30(1-2):136-45 [Trukhan DI, Viktorova IA, Ivanova DS, Goloshubina VV. Acute respiratory viral infections: possibilities of vitamin and mineral complexes in treatment, prevention and rehabilitation. Farmateka. 2023;30(1-2):136-45 (in Russian)]. DOI:10.18565/ pharmateca.2023.1-2.136-145
  3. Клинические рекомендации. Острые респираторные вирусные инфекции (ОРВИ) у взрослых. 2021. Режим доступа: https://cr.minzdrav.gov.ru/recomend/724_1. Ссылка активна на 15.03.2024 [Clinical recommendations. Acute respiratory viral infections (ARVI) in adults. Available at: https://cr.minzdrav.gov.ru/recomend/724_1. Accessed: 15.03.2024 (in Russian)].
  4. Eccles R. Common cold. Front Allergy. 2023;4:1224988. doi: 10.3389/falgy.2023.1224988
  5. Клинические рекомендации. Острая респираторная вирусная инфекция (ОРВИ). 2021. Режим доступа: https://cr.minzdrav.gov.ru/recomend/25_2. Ссылка активна на 15.03.2024 [Clinical recommendations. Acute respiratory viral infection (ARVI). Available at: https://cr.minzdrav.gov.ru/recomend/25_2. Accessed: 15.03.2024 (in Russian)].
  6. Трухан Д.И., Тарасова Л.В. Особенности клиники и лечения острых респираторных вирусных инфекций в практике врача-терапевта. Врач. 2014;8:44-7. Режим доступа: https://www.elibrary.ru/item.asp?id=21905156. Ссылка активна на 15.03.2024 [Trukhan DI, Tarasova LV. Osobennosti kliniki i lecheniia ostrykh respiratornykh virusnykh infekcii v praktike vracha-terapevta. Vrach. 2014;8:44-7. Available at: https://www.elibrary.ru/item.asp?id=21905156. Accessed: 15.03.2024 (in Russian)].
  7. Трухан Д.И., Мазуров А.Л., Речапова Л.А. Острые респираторные вирусные инфекции: актуальные вопросы диагностики, профилактики и лечения в практике терапевта. Терапевтический архив. 2016;11:76-82 [Trukhan DI, Mazurov AL, Rechapova LA. Ostrye respiratornye virusnye infekcii: aktualnye voprosy diagnostiki, profilaktiki i lecheniia v praktike terapevta. Terapevticheskii Arkhiv (Ter. Arkh.). 2016;11:76-82 (in Russian)]. doi: 10.17116/terarkh2016881176-82
  8. Berger MM, Herter-Aeberli I, Zimmermann MB, et al. Strengthening the immunity of the Swiss population with micronutrients: A narrative review and call for action. Clin Nutr ESPEN. 2021;43:39-48. doi: 10.1016/j.clnesp.2021.03.012.
  9. Calder PC, Ortega EF, Meydani SN, et al. Nutrition, Immunosenescence, and Infectious Disease: An Overview of the Scientific Evidence on Micronutrients and on Modulation of the Gut Microbiota. Adv Nutr. 2022;13(5):S1-S26. doi: 10.1093/advances/nmac052
  10. Eggersdorfer M, Berger MM, Calder PC, et al. Perspective: Role of Micronutrients and Omega-3 Long-Chain Polyunsaturated Fatty Acids for Immune Outcomes of Relevance to Infections in Older Adults-A Narrative Review and Call for Action. Adv Nutr. 2022;13(5):1415-30. doi: 10.1093/advances/nmac058
  11. Martinez SS, Huang Y, Acuna L, et al. Role of Selenium in Viral Infections with a Major Focus on SARS-CoV-2. Int J Mol Sci. 2021;23(1):280. doi: 10.3390/ijms23010280
  12. Barchielli G, Capperucci A, Tanini D. The Role of Selenium in Pathologies: An Updated Review. Antioxidants (Basel). 2022;11(2):251. doi: 10.3390/antiox11020251
  13. Moghaddam A, Heller RA, Sun Q, et al. Selenium Deficiency Is Associated with Mortality Risk from COVID-19. Nutrients. 2020;12(7):2098. doi: 10.3390/nu12072098
  14. Bae M, Kim H. Mini-Review on the Roles of Vitamin C, Vitamin D, and Selenium in the Immune System against COVID-19. Molecules. 2020;25(22):5346. doi: 10.3390/molecules25225346
  15. Duntas LH, Benvenga S. Selenium: an element for life. Endocrine. 2015;48(3):756-75. doi: 10.1007/s12020-014-0477-6
  16. Beck MA, Nelson HK, Shi Q, et al. Selenium deficiency increases the pathology of an influenza virus infection. FASEB J. 2001;15(8):1481-3. https://pubmed.ncbi.nlm.nih.gov/11387264/
  17. Taylor EW, Radding W. Understanding selenium and glutathione as antiviral factors in COVID-19: does the viral Mpro protease target host selenoproteins and glutathione synthesis? Front Nutr. 2020;7:143. doi: 10.3389/fnut.2020.00143
  18. Khatiwada S, Subedi A. A mechanistic link between selenium and coronavirus disease 2019 (COVID-19). Curr Nutr Rep. 2021;10(2):125-36. doi: 10.1007/s13668-021-00354-4
  19. Avery JC, Hoffmann PR. Selenium, Selenoproteins, and Immunity. Nutrients. 2018;10(9):1203. doi: 10.3390/nu10091203
  20. Seale LA, Torres DJ, Berry MJ, Pitts MW. A role for selenium-dependent GPX1 in SARS-CoV-2 virulence. Am J Clin Nutr. 2020;112:447-8. doi: 10.1093/ajcn/nqaa177
  21. Laforge M, Elbim C, Frère C, Hémadi M, Massaad C, Nuss P, Benoliel JJ, Becker C. Tissue damage from neutrophil-induced oxidative stress in COVID-19. Nat Rev Immunol. 2020;20(9):515-6. doi: 10.1038/s41577-020-0407-1
  22. Tomo S, Saikiran G, Banerjee M, Paul S. Selenium to selenoproteins – role in COVID-19. EXCLI J. 2021;20:781-91. doi: 10.17179/excli2021-3530
  23. Schomburg L. Selenium Deficiency in COVID-19-A Possible Long-Lasting Toxic Relationship. Nutrients. 2022;14(2):283. doi: 10.3390/nu14020283
  24. Schomburg L. Selenoprotein P – Selenium transport protein, enzyme and biomarker of selenium status. Free Radic Biol Med. 2022;191:150-63. doi: 10.1016/j.freeradbiomed.2022.08.022
  25. Lima LW, Nardi S, Santoro V, Schiavon M. The Relevance of Plant-Derived Se Compounds to Human Health in the SARS-CoV-2 (COVID-19) Pandemic Era. Antioxidants (Basel). 2021;10(7):1031. doi: 10.3390/antiox10071031
  26. Im JH, Je YS, Baek J, et al. Nutritional status of patients with COVID-19. Int J Infect Dis. 2020;100:390-3. doi: 10.1016/j.ijid.2020.08.018
  27. Younesian O, Khodabakhshi B, Abdolahi N, et al. Decreased Serum Selenium Levels of COVID-19 Patients in Comparison with Healthy Individuals. Biol Trace Elem Res. 2021:1-6. doi: 10.1007/s12011-021-02797-w
  28. Rayman MP, Taylor EW, Zhang J. The relevance of selenium to viral disease with special reference to SARS-CoV-2 and COVID-19. Proc Nutr Soc. 2022:1-12. doi: 10.1017/S0029665122002646
  29. Kieliszek M, Lipinski B. Selenium supplementation in the prevention of coronavirus infections (COVID-19). Med Hypotheses. 2020;143:109878. doi: 10.1016/j.mehy.2020.109878
  30. Liu X, Yin S, Li G. Effects of selenium supplement on acute lower respiratory tract infection caused by respiratory syncytial virus. Zhonghua Yu Fang Yi Xue Za Zhi. 1997;31(6):358-61.
  31. Livingstone C. Zinc: physiology, deficiency, and parenteral nutrition. Nutr Clin Pract. 2015;30(3):371-82. doi: 10.1177/0884533615570376
  32. Shankar AH, Prasad AS. Zinc and immune function: the biological basis of altered resistance to infection. Am J Clin Nutr. 1998;68(2 Suppl):447S-63S. doi: 10.1093/ajcn/68.2.447S
  33. Overbeck S, Rink L, Haase H. Modulating the immune response by oral zinc supplementation: a single approach for multiple diseases. Arch Immunol Ther Exp (Warsz). 2008;56(1):15-30. doi: 10.1007/s00005-008-0003-8
  34. Wessels I, Maywald M, Rink L. Zinc as a Gatekeeper of Immune Function. Nutrients. 2017;9(12):1286. doi: 10.3390/nu9121286
  35. Jarosz M, Olbert M, Wyszogrodzka G, et al. Antioxidant and anti-inflammatory effects of zinc. Zinc-dependent NF-kappaB signaling. Inflammopharmacology. 2017;25(1):11-24. doi: 10.1007/s10787-017-0309-4
  36. Kirkil G, Hamdi Muz M, Seçkin D, et al. Antioxidant effect of zinc picolinate in patients with chronic obstructive pulmonary disease. Respir Med. 2008;102(6):840-4. doi: 10.1016/j.rmed.2008.01.010
  37. Samad N, Sodunke TE, Abubakar AR, et al. The Implications of Zinc Therapy in Combating the COVID-19 Global Pandemic. J Inflamm Res. 2021;14:527-50. doi: 10.2147/JIR.S295377.
  38. Li J, Cao D, Huang Y, et al. Zinc Intakes and Health Outcomes: An Umbrella Review. Front Nutr. 2022;9:798078. doi: 10.3389/fnut.2022.798078
  39. Bao S, Knoell DL. Zinc modulates cytokine-induced lung epithelial cell barrier permeability. Am J Physiol Lung Cell Mol Physiol. 2006;291(6):L1132-41. doi: 10.1152/ajplung.00207.2006
  40. Vlieg-Boerstra B, de Jong N, Meyer R, et al. Nutrient supplementation for prevention of viral respiratory tract infections in healthy subjects: A systematic review and meta-analysis. Allergy. 2022;77(5):1373-88. doi: 10.1111/all.15136
  41. Kaushik N, Subramani C, Anang S, et al. Zinc salts block hepatitis E virus replication by inhibiting the activity of viral RNA-dependent RNA polymerase. J Virol. 2017;91(21):e00754-17. doi: 10.1128/JVI.00754-17
  42. Corrao S, Mallaci Bocchio R, Lo Monaco M, et al. Does Evidence Exist to Blunt Inflammatory Response by Nutraceutical Supplementation during COVID-19 Pandemic? An Overview of Systematic Reviews of Vitamin D, Vitamin C, Melatonin, and Zinc. Nutrients. 2021;13(4):1261. doi: 10.3390/nu13041261
  43. Patel O, Chinni V, El-Khoury J, et al. A pilot double-blind safety and feasibility randomized controlled trial of high-dose intravenous zinc in hospitalized COVID-19 patients. J Med Virol. 2021;93(5):3261-7.
  44. Scarpellini E, Balsiger LM, Maurizi V, et al. Zinc and gut microbiota in health and gastrointestinal disease under the COVID-19 suggestion. Biofactors. 2022;48(2):294-306. doi: 10.1002/biof.1829
  45. Skalny AV, Rink L, Ajsuvakova OP, et al. Zinc and respiratory tract infections: Perspectives for COVID-19 (Review). Int J Mol Med. 2020;46(1):17-26. doi: 10.3892/ijmm.2020.4575.
  46. Jothimani D, Kailasam E, Danielraj S, et al. COVID-19: Poor outcomes in patients with zinc deficiency. Int J Infect Dis. 2020;100:343-9. doi: 10.1016/j.ijid.2020.09.014
  47. Wessels I, Rolles B, Rink L. The Potential Impact of Zinc Supplementation on COVID-19. Pathogenesis. Front Immunol. 2020;11:1712. doi: 10.3389/fimmu.2020.01712
  48. Tomasa-Irriguible T-M, Bielsa-Berrocal L, Bordejé-Laguna L, et al. Low levels of few micronutrients may impact COVID-19 disease progression: an observational study on the first wave. Metabolites. 2021;11(9):565. doi: 10.3390/metabo11090565
  49. Трухан Д.И. Новая коронавирусная инфекция (COVID-19) и заболевания/патологические состояния органов дыхания. Медицинский совет. 2022;16(18):154-61. [Trukhan DI. New coronavirus infection (COVID-19) and respiratory diseases/pathological conditions. Medical Council. 2022;16(18):154-61 (in Russian)]. doi: 10.21518/2079-701X-2022-16-18-154-161
  50. Rahman MT, Idid SZ. Can Zn Be a Critical Element in COVID-19 Treatment? Biol Trace Elem Res. 2021;199(2):550-8. doi: 10.1007/s12011-020-02194-9
  51. de Almeida Brasiel PG. The key role of zinc in elderly immunity: A possible approach in the COVID-19 crisis. Clin Nutr ESPEN. 2020;38:65-6. doi: 10.1016/j.clnesp.2020.06.003
  52. Hunter J, Arentz S, Goldenberg J, et al. Zinc for the prevention or treatment of acute viral respiratory tract infections in adults: a rapid systematic review and meta-analysis of randomised controlled trials. BMJ Open. 2021;11(11):e047474. doi: 10.1136/bmjopen-2020-047474
  53. Engin AB, Engin ED, Engin A. Can iron, zinc, copper and selenium status be a prognostic determinant in COVID-19 patients? Environ Toxicol Pharmacol. 2022;95:103937. doi: 10.1016/j.etap.2022.103937
  54. Alexander J, Tinkov A, Strand TA, et al. Early Nutritional Interventions with Zinc, Selenium and Vitamin D for Raising Anti-Viral Resistance Against Progressive COVID-19. Nutrients. 2020;12(8):2358. doi: 10.3390/nu12082358
  55. Huang Z, Liu Y, Qi G, et al. Role of vitamin A in the immune system. J Clin Med. 2018;7(9):258. doi: 10.3390/jcm7090258
  56. Stephensen CB, Lietz G. Vitamin A in resistance to and recovery from infection: relevance to SARS-CoV2. Br J Nutr. 2021;126(11):1663-72. doi: 10.1017/S0007114521000246
  57. Elmadfa I, Meyer AL. The role of the status of selected micronutrients in shaping the immune function. Endocr Metab Immune Disord Drug Targets. 2019;19:1100-15. doi: 10.2174/1871530319666190529101816
  58. Tepasse PR, Vollenberg R, Fobker M, et al. Vitamin A Plasma Levels in COVID-19 Patients: A Prospective Multicenter Study and Hypothesis. Nutrients. 2021;13(7):2173. doi: 10.3390/nu13072173
  59. Carvalho MCDC, Araujo JKCP, da Silva AGCL, et al. Retinol Levels and Severity of Patients with COVID-19. Nutrients. 2023;15(21):4642. doi: 10.3390/nu15214642
  60. Zhang Y, Du Z, Ma W, et al. Vitamin A status and recurrent respiratory infection among Chinese children: a nationally representative survey. Asia Pac J Clin Nutr. 2020;29:566-76. doi: 10.6133/apjcn.202009_29(3).0016
  61. Abdelkader A, Wahba AA, El-Tonsy M, et al. Recurrent respiratory infections and vitamin A levels: a link? It is cross-sectional. Medicine (Baltimore). 2022;101(33):e30108. doi: 10.1097/MD.0000000000030108
  62. Iddir M, Brito A, Dingeo G, et al. Strengthening the Immune System and Reducing Inflammation and Oxidative Stress through Diet and Nutrition: Considerations during the COVID-19 Crisis. Nutrients. 2020;12(6):1562. doi: 10.3390/nu12061562
  63. Ebrahimzadeh-Attari V, Panahi G, Hebert JR, et al. Nutritional approach for increasing public health during pandemic of COVID-19: A comprehensive review of antiviral nutrients and nutraceuticals. Health Promot Perspect. 2021;11(2):119-36. doi: 10.34172/hpp.2021.17
  64. Tavakol S, Seifalian AM. Vitamin E at a high dose as an anti-ferroptosis drug and not just a supplement for COVID-19 treatment. Biotechnol Appl Biochem. 2022;69(3):1058-60. doi: 10.1002/bab.2176
  65. Lai YJ, Chang HS, Yang YP, et al. The role of micronutrient and immunomodulation effect in the vaccine era of COVID-19. J Chin Med Assoc. 2021;84(9):821-6. doi: 10.1097/JCMA.0000000000000587
  66. Meydani SN, Leka LS, Fine BC, et al. Vitamin E and respiratory tract infections in elderly nursing home residents: a randomized controlled trial. JAMA. 2004;292:828-36. doi: 10.1001/jama.292.7.828
  67. Figueroa-Méndez R, Rivas-Arancibia S. Vitamin C in health and disease: its role in the metabolism of cells and redox state in the brain. Front Physiol. 2015;6:397. doi: 10.3389/fphys.2015.00397
  68. Abioye AI, Bromage S, Fawzi W. Effect of micronutrient supplements on influenza and other respiratory tract infections among adults: a systematic review and meta-analysis. BMJ Glob Health. 2021;6(1):e003176. doi: 10.1136/bmjgh-2020-003176
  69. Van Straten M, Josling P. Preventing the common cold with a vitamin C supplement: a double-blind, placebo-controlled survey. Adv Ther. 2002;19:151-9. doi: 10.1007/BF02850271
  70. Johnston CS, Barkyoumb GM, Schumacher SS. Vitamin C supplementation slightly improves physical activity levels and reduces cold incidence in men with marginal vitamin C status: a randomized controlled trial. Nutrients. 2014;6:2572-83. doi: 10.3390/nu6072572
  71. Kim TK, Lim HR, Byun JS. Vitamin C supplementation reduces the odds of developing a common cold in Republic of Korea Army recruits: randomised controlled trial. BMJ Mil Health. 2022;168:117-23. doi: 10.1136/bmjmilitary-2019-001384
  72. Swain RA, Kaplan B. Upper respiratory infections: treatment selection for active patients. Phys Sportsmed. 1998;26(2):85-96. doi: 10.3810/psm.1998.02.944
  73. Khaw KT, Woodhouse P. Interrelation of vitamin C, infection, haemostatic factors, and cardiovascular disease. BMJ. 1995;310(6994):1559-63. doi: 10.1136/bmj.310.6994.1559
  74. Schloss J, Lauche R, Harnett J, et al. Efficacy and safety of vitamin C in the management of acute respiratory infection and disease: A rapid review. Adv Integr Med. 2020;7(4):187-91. doi: 10.1016/j.aimed.2020.07.008
  75. Ran L, Zhao W, Wang J, et al. Extra Dose of Vitamin C Based on a Daily Supplementation Shortens the Common Cold: A Meta-Analysis of 9 Randomized Controlled Trials. Biomed Res Int. 2018;2018:1837634. doi: 10.1155/2018/1837634
  76. Hemilä H, Chalker E. Vitamin C reduces the severity of common colds: a meta-analysis. BMC Public Health. 2023;23(1):2468. doi: 10.1186/s12889-023-17229-8
  77. Abobaker A, Alzwi A, Alraied AHA. Overview of the possible role of vitamin C in management of COVID-19. Pharmacol Rep. 2020;72(6):1517-28. doi: 10.1007/s43440-020-00176-1
  78. Uddin MS, Millat MS, Baral PK, et al. The protective role of vitamin C in the management of COVID-19: A Review. J Egypt Public Health Assoc. 2021;96(1):33. doi: 10.1186/s42506-021-00095-w
  79. Calder PC. Nutrition, immunity and COVID-19. BMJ Nutr Prev Health. 20203(1):74-92. doi: 10.1136/bmjnph-2020-000085
  80. Shakoor H, Feehan J, Al Dhaheri AS, et al. Immune-boosting role of vitamins D, C, E, zinc, selenium and omega-3 fatty acids: Could they help against COVID-19? Maturitas. 2021;143:1-9. doi: 10.1016/j.maturitas.2020.08.003
  81. Kumar P, Kumar M, Bedi O, et al. Role of vitamins and minerals as immunity boosters in COVID-19. Inflammopharmacology. 2021:1-16. doi: 10.1007/s10787-021-00826-7
  82. Galmés S, Serra F, Palou A. Current State of Evidence: Influence of Nutritional and Nutrigenetic Factors on Immunity in the COVID-19 Pandemic Framework. Nutrients. 2020;12(9):2738. doi: 10.3390/nu12092738
  83. Cámara M, Sánchez-Mata MC, Fernández-Ruiz V, et al. A Review of the Role of Micronutrients and Bioactive Compounds on Immune System Supporting to Fight against the COVID-19 Disease. Foods. 2021;10(5):1088. doi: 10.3390/foods10051088
  84. Dharmalingam K, Birdi A, Tomo S, et al. Trace Elements as Immunoregulators in SARS-CoV-2 and Other Viral Infections. Indian J Clin Biochem. 2021:1-11. doi: 10.1007/s12291-021-00961-6
  85. Calder PC, Carr AC, Gombart AF, Eggersdorfer M. Optimal Nutritional Status for a Well-Functioning Immune System Is an Important Factor to Protect against Viral Infections. Nutrients. 2020;12(4):1181. doi: 10.3390/nu12041181
  86. Alkhatib A. Antiviral Functional Foods and Exercise Lifestyle Prevention of Coronavirus. Nutrients. 2020;12(9):2633. doi: 10.3390/nu12092633
  87. Pecora F, Persico F, Argentiero A, et al. The Role of Micronutrients in Support of the Immune Response against Viral Infections. Nutrients. 2020;12(10):3198. doi: 10.3390/nu12103198
  88. Jayawardena R, Sooriyaarachchi P, Chourdakis M, et al. Enhancing immunity in viral infections, with special emphasis on COVID-19: A review. Diabetes Metab Syndr. 2020;14(4):367-82. doi: 10.1016/j.dsx.2020.04.015
  89. Di Renzo L, Gualtieri P, Pivari F, et al. COVID-19: Is there a role for immunonutrition in obese patient? J Transl Med. 2020;18(1):415. doi: 10.1186/s12967-020-02594-4
  90. Zelka FZ, Kocatürk RR, Özcan ÖÖ, Karahan M. Can Nutritional Supports Beneficial in Other Viral Diseases Be Favorable for COVID-19? Korean J Fam Med. 2022;43(1):3-15. doi: 10.4082/kjfm.20.0134
  91. Гриневич В.Б., Губонина И.В., Дощицин В.Л., и др. Особенности ведения коморбидных пациентов в период пандемии новой коронавирусной инфекции (COVID-19). Национальный Консенсус 2020. Кардиоваскулярная терапия и профилактика. 2020;19(4):2630 [Grinevich VB, Gubonina IV, Doshhicin VL, et al. Osobennosti vedeniia komorbidnyh patcientov v period pandemii novoi koronavirusnoi infekcii (COVID-19). Natcionalnyi Konsensus 2020. Kardiovaskuliarnaia terapiya i profilaktika. 2020;19(4):2630 (in Russian)]. doi: 10.15829/1728-8800-2020-2630
  92. Трухан Д.И., Давыдов Е.Л. Место и роль терапевта и врача общей практики в курации коморбидных пациентов в период пандемии новой коронавирусной инфекции (COVID-19): акцент на неспецифическую профилактику. Фарматека. 2021;10:34-45 [Trukhan DI, Davydov EL. The place and role of a therapist and general practitioner in the management of comorbid patients during the pandemic of the new coronavirus infection (COVID-19): an emphasis on non-specific prevention. Farmateka. 2021;28(10):34-45 (in Russian)]. doi: 10.18565/pharmateca.2021.10.34-45
  93. Трухан Д.И., Давыдов Е.Л., Чусова Н.А., Чусов И.С. Возможности терапевта в профилактике и на реабилитационном этапе после новой коронавирусной инфекции (COVID-19) коморбидных пациентов с артериальной гипертензией. Клинический разбор в общей медицине. 2021;5:6-15 [Trukhan DI, Davydov EL, Chusova NA, Chusov IS. Opportunities of the therapist in prevention and at the rehabilitation stage after new coronaviral infection (COVID-19) in comorbid patients with arterial hypertension. Clinical review for general practice. 2021;5:6-15 (in Russian)]. doi: 10.47407/kr2021.2.5.00064
  94. Трухан Д.И., Давыдов Е.Л., Чусова Н.А. Нутрицевтики в профилактике, лечении и на этапе реабилитации после новой коронавирусной инфекции (COVID-19). Клинический разбор в общей медицине. 2021;7:21-34 [Trukhan DI, Davydov EL, Chusova NA. Nutriceutics in prevention, treatment and at the stage of rehabilitation after new coronavirus infection (COVID-19). Clinical review for general practice. 2021;7:21-34 (in Russian)]. doi: 10.47407/kr2021.2.7.00085
  95. Трухан Д.И., Турутина Н.М. Витаминно-минеральные комплексы в лечении острых респираторных вирусных инфекций. Клинический разбор в общей медицине. 2022;6:52-60 [Trukhan DI, Turutina NM. Vitamin and mineral complexes in the treatment of acute respiratory viral infections. Clinical review for general practice. 2022;6:52-60 (in Russian)]. doi: 10.47407/kr2022.3.6.00177
  96. Попова Е.Н., Пономарева Л.А., Чинова А.А., Андрианов А.И. Комплексный подход к терапии острых респираторных вирусных инфекций. Клинический разбор в общей медицине. 2023;4(8):42-5 [Popova EN, Ponomareva LA, Chinova AA, Andrianov AI. Multifaceted approach to treatment of acute respiratory viral infections. Clinical review for general practice. 2023;4(8):42-5 (in Russian)]. doi: 10.47407/kr2023.4.8.00330
  97. Попова Е.Н., Митькина М.И., Чинова А.А., Пономарева Л.А. Роль витаминов и микроэлементов в профилактике и лечении бронхолегочных заболеваний у взрослых. Клинический разбор в общей медицине. 2023;4(2):36-42 [Popova EN, Mitkina MI, Chinova AA, Ponomareva LA. The role of vitamins and minerals in prevention and treatment of bronchopulmonary diseases in adults. Clinical review for general practice. 2023;4(2):36-42 (in Russian)]. doi: 10.47407/kr2023.4.2.00202
  98. Трухан Д.И., Рожкова М.Ю., Иванова Д.С., Голошубина В.В. Сезон простуд: возможности витаминно-минеральных комплексов в профилактике и лечении острых респираторных вирусных инфекций. Фарматека. 2024;31(1):138-48 [Trukhan DI, Rozhkova MYu, Ivanova DS., Goloshubina VV. Cold season: the potential of vitamin-mineral complexes in the prevention and treatment of acute respiratory viral infections. Farmateka. 2024;31(1):138-48 (in Russian)]. doi: 10.18565/pharmateca.2024.1.138-148
  99. Трухан Д.И. Коморбидный пациент на терапевтическом приеме в период пандемии COVID-19. Актуальные аспекты реабилитационного периода. Фарматека. 2022;29(13):15-24 [Trukhan DI. A comorbid patient at a therapeutic reception during the COVID-19 pandemic. current aspects of the rehabilitation period. Farmateka. 2022;29(13):15-24 (in Russian)]. doi: 10.18565/pharmateca.2022.13.15-24
  100. Трухан Д.И., Иванова Д.С. Витаминно-минеральные комплексы в профилактике, лечении и на этапе реабилитации после острых респираторных вирусных инфекций и новой коронавирусной инфекции (COVID-19). Клинический разбор в общей медицине. 2022;5:33-46 [Trukhan DI, Ivanova DS. Vitamin and mineral complexes in prevention, treatment and rehabilitation after acute respiratory viral infections and new coronavirus infection (COVID-19). Clinical review for general practice. 2022;5:33-46 (in Russian)]. doi: 10.47407/kr2022.3.5.00160
  101. Симаненков В.И., Маев И.В., Ткачева О.Н. и др. Синдром повышенной эпителиальной проницаемости в клинической практике. Мультидисциплинарный национальный консенсус. Кардиоваскулярная терапия и профилактика. 2021;20(1):2758. [Simanenkov VI, Maev IV, Tkacheva ON, et al. Syndrome of increased epithelial permeability in clinical practice. Multidisciplinary National Consensus. Kardiovaskulyarnaya terapiya i profilaktika. 2021;20(1):2758 (in Russian)]. doi: 10.15829/1728-8800-2021-2758
  102. Majewski S, Piotrowski W. Pulmonary manifestations of inflammatory bowel disease. Arch Med Sci. 2015;11(6):1179-88. doi: 10.5114/aoms.2015.56343.
  103. Keely S, Talley NJ, Hansbro PM. Pulmonary-intestinal cross-talk in mucosal inflammatory disease. Mucosal Immunol. 2012;5:7-18. doi: 10.1038/mi.2011.55.
  104. Трухан Д.И., Иванова Д.С. Роль и место синдрома повышенной эпителиальной проницаемости в развитии сердечно-сосудистых и бронхолегочных заболеваний: теоретические и практические аспекты применения ребамипида. Фарматека. 2021;28(5):115-26. [Trukhan DI, Ivanova DS. Role and location of increased epithelial permeability syndrome in the development of cardiovascular and bronchopulum diseases: theoretical and practical aspects of application of rebamipide. Farmateka. 021;28(5):115-26 (in Russian)]. DOI:10.18565/ pharmateca.2021.5.115-126

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Consilium Medicum

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».