Action as an algebraic vector magnitude



Cite item

Full Text

Abstract

The article shows that quantum phenomena can be explained by the algebraic structure of space of the fundamental physical value of action. The eigenvalue operator problem is obtained as a consequence of an algebraic action vector multiplication law, existence of which we conceded. Thus we come to the explanation of quantum phenomena by the algebraic structure of the space of action vectors. Also the authors planned the path for explanations of types of quantum operators in relation to classical differentiation operators: multipliers included into the structure constants can be transferred to the operators of differentiation. Such multipliers include imaginary unit. In addition, it was established understanding of wave function as a partial differential of an action vector.

About the authors

A. A. Ketsaris

Moscow State University of Mechanical Engineering (MAMI)

Ph.D.; +7-495-223-05-23 ext. 1312

References

  1. Кецарис А.А. Основания математической физики. Ассоциация независимых издателей, 1997г., 280с.
  2. D. Hestenes, A. Weingartshofer, The electron, new theory and experiment, Kluwer Academic Publishers, Dordrecht, 1991.
  3. D. Hestenes, G.Sobczyk, Clifford algebra in geometric calculus, Riedel Publishing Company, Dordrecht, 1984.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2013 Ketsaris A.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).