Substantiation of the requirements for the suspension of unmanned transport vehicles



Cite item

Full Text

Abstract

Currently, there is a proliferation of vehicles in which the presence of a driver or crew is not provided. They are controlled remotely or are able to move independently. These vehicles belong to the class of unmanned. Analysis of the development stages of the chassis for the traditional crew machine shows that the basic requirements for suspension systems are that the vertical accelerations acting on the driver and crew should not exceed certain values. However, for unmanned vehicles, these requirements are not applicable due to the absence of people in the vehicle body. Considering that unmanned vehicles must move in the same conditions as traditional ones, including cross-country terrain, in some cases along harmonic tracks, there is an urgent task to develop special requirements, which should be taken into account when designing chassis for unmanned vehicles as a separate class of transport equipment. The article proposes to consider some approaches to the definition of such requirements. In particular, when changing the load on the undercarriage elements, it is proposed to proceed from the condition that the vehicle should provide the possibility of transporting the payload, which is usually indicated in the terms of reference. In accordance with this statement, the necessity of studying the most loaded suspension elements is justified, as a result of which it is possible to predict the mass characteristics of the designed chassis. This paper identifies key problems and suggests some ways to solve them. Based on the above material, some conclusions have been made that can be used in further work in solving practical problems in this area.

About the authors

E. B Sarach

Bauman Moscow State Technical University

DSc in Engineering

I. A Smirnov

Moscow Higher Military Command School

PhD in Engineering

YA. A Tkachev

Bauman Moscow State Technical University

Email: check-26@yandex.ru

References

  1. Дмитриев А.А., Чобиток В.А., Тельминов А.В. Теория и расчет нелинейных систем подрессоривания гусеничных машин. М.: Машиностроение, 1976. 207 с.
  2. Дядченко М.Г., Котиев Г.О., Сарач Е.Б. Конструкция и расчет подвесок быстроходных гусеничных машин. Часть 1. М.: Издательство МГТУ им. Н.Э. Баумана, 2007. 40 с.
  3. Военные гусеничные машины:Учебник / В 4-х т. под ред. Э.К. Потемкина. Т.1. Устройство. Кн.1. М.: МГТУ им. Н.Э. Баумана. 1990. 380 с.
  4. Буров С.С. Конструкция и расчет танков. М, Академия БТВ, 1973. 593 с.
  5. Юферев С. Робот-сапер «Уран-6»//Военное обозрение. Режим доступа: https://topwar.ru/62494-robot-saper-uran-6.html.
  6. At AUSA BAE Systems come back with its project of ARCV Armed Robotic Combat Vehicle 11503171. Режим доступа: https://www.armyrecognition.com/weapons_defence_industry_military_technology_uk/at_ausa_bae_systems_come_back_with_its_project_of_arcv_armed_robotic_combat_vehicle_11503171.html.
  7. Рябов К. Проект робототехнического комплекса «Нерехта» // Военное обозрение. Режим доступа: https://topwar.ru/84742-proekt-robototehnicheskogo-kompleksa-nerehta.html.
  8. Даманцев Е. «Уран-9» и ACVR «Black Knight»: концептуальные различия в создании беспилотных средств огневой поддержки войск // Военное обозрение. Режим доступа: https://topwar.ru/111354-uran-9-i-arcv-black-knight-konceptualnye-razlichiya-v-sozdanii-bespilotnyh-sredstv-ognevoy-podderzhki-voysk.html.

Copyright (c) 2019 Sarach E.B., Smirnov I.A., Tkachev Y.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies