Volumetric hydraulic drive with series connection of hydraulic actuators

Cover Page


Cite item

Full Text

Abstract

The aim of the proposed work is theoretical and experimental studies of the performance of a single-channel hydraulic drive with a series connection of executive hydraulic cylinders and the development of recommendations for predicting their characteristics. The authors of the paper carried out a set of experimental studies and obtained the numerical kinematic, speed and power characteristics of a single-channel hydraulic drive with five hydraulic cylinders connected in series. It is shown that the nature of the kinematic connection is determined by the differentiation of the hydraulic cylinders. The speed of advancement of the piston of an individual hydraulic cylinder is determined by its serial number in the chain of hydraulic cylinders, while the highest speed of the piston movement is developed by the first hydraulic cylinder. The relative unevenness of the piston movement in comparison with the speed of the piston movement of the first hydraulic cylinder is determined by the differentiation of the hydraulic cylinder, while the hydraulic drive with the differentiation D = 2 has the greatest unevenness. It is shown that by the selection of the differentiation of the hydraulic cylinders, their stepwise arrangement and the displacement of the location of the bottom of the hydraulic cylinder, that it is possible to realize complex forms of the total trajectory of the points of attachment of the hydraulic cylinder rods. In the hydrostatic (power) hydraulic drive in the rod cavities of the hydraulic cylinders, depending on the serial number of the hydraulic cylinder, the thrust on its rod and the differentiation set different pressure levels, and the lowest pressure will be in the piston cavity of the last hydraulic cylinder. With uniformly loaded hydraulic cylinders, the pressure in the piston cavities depends only on the number of the hydraulic cylinder and its differentiation. In a hydraulic drive with hydraulic cylinders of equal power, the last hydraulic cylinder will develop the greatest force at the lowest piston speed. In addition, the work also shows that the reproducibility of the positions of unloaded rods of hydraulic cylinders of equal differentiation is not less than 1%. As a result of the experimental studies, a method was developed for the design of a volumetric hydraulic drive with sequential switching on of executive hydraulic cylinders, which can be used to solve the problems of hydrofication of mechanical engineering production (bending presses, sheet stamping), in shipbuilding (ship slipways), in flexible production systems, industrial and warehouse logistics.

About the authors

V. N Pil'gunov

Bauman Moscow State Technical University

PhD in Engineering Moscow, Russia

K. D Yefremova

Bauman Moscow State Technical University

Email: efremova.k.d@gmail.com
PhD in Engineering Moscow, Russia

References

  1. Емельянов Р.Т., Прокопьев А.П., Климов А.С. Моделирование рабочего процесса гидропривода с дроссельным регулированием. Журнал «Строительные и дорожные машины». 2009, № 11. С. 30-33.
  2. Антоненко В.И., Сидоренко В.С. Непрямое дроссельное регулирование в многодвигательных гидромеханических системах. «Вестник Донского государственного технического университета». Том 10, № 1(16), 2010. С. 70-75.
  3. Денисов В.А. Особенности дроссельного регулирования гидроприводов. Журнал «Молодой ученый», июнь 2013, № 6. С. 49-52.
  4. Пильгунов В.Н. Исследование энергетических характеристик гидропривода с дроссельным регулированием. «Инженерный журнал: наука и инновации, 2013, № 5. http://engjournal.ru/catalog.machin/hydro/685.html.
  5. Blackburn J.E., Reethof G., Shearer J.I. Fluid Power Control, N.J., 1960, 356 p.
  6. Васильев Л.В. Развитие математического моделирования гидроагрегатов на основе применения теории подобия. М., «Приводная техника», 2001, № 1. С. 30-43.
  7. Thoma J. Mathematical model and effective performance of hydraustatic machines and tranmission. «Hydraulic and Pneumatic power», 1969, November, p. 642-651.
  8. Schlesser W.M. Mathematical model for hydraulic power and motors. «Hydraulic power transmission», 1961, Vol. 7, № 76, p. 252-257.
  9. Wave Processes Regulators Optimisation in Hydraulic Systems. D.N. Popov, N.G. Sosnovsky and M.V. Siukhin, 2018. IOP Conf. Ser.: Mater. Sci. Eng. 468 012014. htpps://iopscience.iop.org/issue/1757-899X/468/012014.
  10. Никитин О.Ф. Гидравлика и гидро-пневмопривод. М., Изд-во МГТУ им. Н.Э. Баумана, 2012. 430 с.
  11. Попов Д.Н. Механика гидро- и пневмоприводов: учебник для вузов. М., Изд-во МГТУ им. Н.Э. Баумана, 2009. 450 с.
  12. Пильгунов В.Н., Ефремова К.Д. Анализ эффективности дроссельного регулирования скорости в объемных гидроприводах. М., «Машиностроение и компьютерные технологии». 2012: (2), С. 13-33. htpps://doi.org/10.24108/0219.0001455.
  13. Ефремова К.Д., Пильгунов В.Н. Использование многофункционального клапана давления в объемных гидроприводах. М., «Машиностроение и компьютерные технологии». 2019: (2), C. 1-14, htpps://doi.org/10.2408/0319.0001476.

Copyright (c) 2020 Pil'gunov V.N., Yefremova K.D.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies