Evaluation of indicators of curvilinear movement of a road train using mathematical simulation

Cover Page


Cite item

Full Text

Abstract

Introduction: a widespread approach to the transportation of large-sized and heavy-weight indivisible cargo on roads and terrain is the use of multi-axle wheeled transport complexes, which are road trains. At the same time, due to the significant overall dimensions, one of the most important properties of such machines is agility, that is, the ability to move along a trajectory of large curvature in a limited area, which is especially important in loading / unloading zones. Subject of research: the article presents an approach to predicting the indicators of curvilinear movement of multi-axle wheeled road trains, based on the application of the method of mathematical modeling of the dynamics of body systems. Methodology and methods: the essence of the method is to create a mathematical model of the movement of a road train, represented by a system of rigid bodies, which are interconnected by kinematic and power connections. The simulation model developed within the framework of the study makes it possible to take into account with high accuracy the peculiarities of the interaction of the wheel propeller with the supporting surface, the redistribution of normal reactions between the support modules, as well as the force factors arising in the coupling device and ensuring the interaction between the tractive vehicle and the trailer link. The mathematical description of the interaction of the propeller with the ground is based on the concept of “friction ellipse”. Using the presented model, an assessment of the turnability of a wheeled road train equipped with a trailed link with swivel and non-swivel wheels was carried out. The required width along the tracks of the outer (running in) and inner (lagging) wheels was used as an assessment criterion. To assess the feasibility of using a trailed link with fully steered wheels and, accordingly, complicating the design of the machine, an additional assessment of the required power of the steering drive was carried out. Results and scientific novelty: a mathematical model of the dynamics of a road train was developed. It makes possible to predict with high accuracy the indicators of curvilinear movement of wheeled vehicles, as well as to estimate the required power of the steering drive. Practical significance: a mathematical model of road train movement was developed, which allows a wide range of tests to be carried out to assess not only the indicators of curved-linear movement, but also the mobility of wheeled vehicles of any configuration as a whole.

About the authors

V. A Gorelov

Bauman Moscow State Technical University

DSc in Engineering Moscow, Russia

K. B Yevseyev

Bauman Moscow State Technical University

PhD in Engineering Moscow, Russia

O. I Chudakov

Bauman Moscow State Technical University

PhD in Engineering Moscow, Russia

K. S Balkovskiy

Bauman Moscow State Technical University

Email: konstantin-balkovsky@ya.ru
Moscow, Russia

References

  1. ADAMS - The Multibody Dynamics Simulation Solution [URL: https://www.mscsoftware.com/product/adams] (дата обращения: 17.07.2020)
  2. EULER - Software Complex for Automated Dynamic Analysis of Multibody Mechanical Systems [URL: http://www.euler.ru/index.php/euler] (дата обращения: 17.07.2020)
  3. Универсальный механизм - программный комплекс для моделирования динамики механических систем. [URL: http://www.umlab.ru/pages/index.php] (дата обращения: 17.07.2020)
  4. ФРУНД - программная система формирования решений уравнений нелинейной динамики. [URL: http://www.frund.vstu.ru] (дата обращения: 17.07.2020)
  5. MATLAB Simscape/Multibody - Model and simulate multibody mechanical systems. [URL: https://www.mathworks.com/products/simmechanics.html] (дата обращения: 17.07.2020)
  6. Simscape™ Multibody™ Getting Started Guide. The MathWorks, Inc. 2017 https://www.mathworks.com/help/releases/R2017b/pdf_doc/physmod/sm/mech_gs.pdf (дата обращения 8.07.2020)
  7. Рождественский Ю.Л., Машков К.Ю. О формировании реакций при качении упругого колеса по недеформируемому основанию // Труды МВТУ. 1982. № 390. С. 56-64.
  8. Ларин В.В. Теория движения полноприводных колёсных машин: учебник. М.: Изд-во МГТУ им. Н.Э. Баумана, 2010. 391 с.
  9. Смирнов Г.А. Теория движения колесных машин: Учебник для студентов машиностроительных специальностей вузов. 2-е изд., доп. и перераб. М.: Машиностроение. 1990. 352 с.
  10. Janosi Z. Hanamoto B. The analytical determination of drawbar pull as a function of slip for tracked vehicles in deformable soil // Intern. Conf. on the mechanics of soil-vehicles. Tyrin. 1961. Report 44. P. 331-359.
  11. Проектирование полноприводных колесных машин: Учебник для вузов: П79 В 3 т. Т. 2 / Б.А. Афанасьев, Л.Ф. Жеглов, В.Н. Зузов и др.; Под ред. А.А. Полунгяна. М.: Изд-во МГТУ им. Н.Э. Баумана, 2008. 528 с.
  12. Опейко Ф.А. Экспериментальное исследование анизотропного трения // МИМЭСХ: Сб. научно-технических трудов. М.: Советская наука. 1952. С. 57-64
  13. Раймпель Й. Шасси автомобиля. Рулевое управление. М.: Машиностроение. 1987. 232 с.
  14. Платонов В.Ф., Леиашвили Г.Р. Гусеничные и колесные транспортно-тяговые машины. М.: Машиностроение. 1986. 296 с.
  15. Горелов В.А. Научные методы повышения безопасности и энергоэффективности движения многоосных колесных транспортных комплексов: дис. …д-ра техн. наук: 05.05.03. М.: МГТУ им. Н.Э. Баумана, 2012. 336 с.
  16. Gorelov, V.A., Komissarov, A.I., Miroshnichenko, A.V. 8×8 wheeled vehicle modeling in a multibody dynamics simulation software. nternational Conference on Industrial Engineering, ICIE 2015; South Ural State UniversityChelyabinsk; Russian Federation; 22 October 2015 до 23 October 2015, Volume 129, 2015, Pages 300-307.
  17. Gorelov, V., Komissarov, A., Vozmishcheva, I. Analysis of the cornering stiffness uncertainty impact on the steering sensitivity of a two-axle automobile. 2019 Conference on Design Technologies for Wheeled and Tracked Vehicles, MMBC 2019; Bauman Moscow State Technical UniversityMoscow; Russian Federation, Volume 820, Issue 1, 27 May 2020.
  18. Vdovin, D.S., Chichekin, I.V., Levenkov, Y.Y., Shabolin, M.L. Automation of wheeled vehicles load bearing frames finite-element models loading procedure by using inertia relief method and vehicle multi-body dynamics model. International Automobile Scientific Forum: Intelligent Transport System Technologies and Components, IASF 2018; Moscow; Russian Federation; Volume 534, Issue 1, 12 June 2019.
  19. Eric Lucet, Alain Micaelli. Stabilization of a road-train of articulated vehicles. Robotics and Autonomous Systems, Volume 114, 2019, Pages 106-123, ISSN 0921-8890, DOI: https://doi.org/10.1016/j.robot.2019.01.016.

Copyright (c) 2020 Gorelov V.A., Yevseyev K.B., Chudakov O.I., Balkovskiy K.S.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies