Study of the potential use of hydrodiodes to enhance the volumetric efficiency of a centrifugal pump

Cover Page


Cite item

Abstract

BACKGROUND: For centrifugal pumps, especially those with low specific speed coefficients, the volumetric efficiency is a very important parameter that largely determines the overall efficiency of the pump. Meanwhile, the amount of leakage in the flow part of the pump depends on the shape and size of the slot seals on the impeller. In this paper, the attempt to apply the well-known operational principle of a hydrodiode is made in order to reduce volumetric losses in the pump through a reduction in the flow rate coefficient of the slot seal, whose surface is profiled according to the principles of a hydrodiode.

AIM: Analysis of the possibility of utilizing the hydrodiode-like grooves on the surface of a slot seal in order to reduce the flow rate of liquid through the seal based on the computational fluid dynamics methods.

METHODS: The computational fluid dynamics method based on the solving of discrete analogs of the basic hydrodynamic equations is used in this paper.

RESULTS: The parameters of liquid flow in the slot seals with smooth surfaces, concentric grooves, and proposed profiled hydrodiodes in various sizes and shapes have been calculated. The flow rate coefficients for each type of seal have been determined, and comparative graphs have been built.

CONCLUSION: Based on the findings of this study, it can be stated that, overall, the use of hydrodiodes does not give significant advantages over the concentric groove with significantly increased complexity in manufacturing.

About the authors

Vladislav D. Fomenko

Bauman Moscow State Technical University

Author for correspondence.
Email: vladislav.fomenko.2014@gmail.com
ORCID iD: 0000-0003-0550-0859
SPIN-code: 5705-5352

Master Student of the Hydromechanics, Hydraulic Machines and Hydropneumoautomatics Department

Russian Federation, 5 2nd Baumanskaya street, 105005 Moscow

Alexey I. Petrov

Bauman Moscow State Technical University

Email: alexeypetrov@bmstu.ru
ORCID iD: 0000-0001-8048-8170
SPIN-code: 7172-0320

Cand. Sci. (Engineering), Associate Professor of the Hydromechanics, Hydraulic Machines and Hydropneumoautomatics Department

Russian Federation, 5 2nd Baumanskaya street, 105005 Moscow

Egor V. Efremov

Villina LLC

Email: efremow3g@yandex.ru
ORCID iD: 0009-0005-3209-4253

Leading Design Engineer of the Chief Designer Department

Russian Federation, 440028 Penza

References

  1. U.S. patent 1,329,559; priority date Feb 21, 1916.
  2. Rudnev SS, Matveev IV. Methodical manual for course design of vane pumps. Moscow: MVTU im NE Baumana; 1975. (In Russ.)
  3. Lomakin AA. Centrifugal and axial pumps. Moscow, Leningrad: Mashinostroenie, 1966. (In Russ.)
  4. Mikhailov AK, Malyushenko VV. Vane pumps. Theory, calculation and design. Moscow: Mashinostroenie; 1977. (In Russ.)
  5. Patankar S. Numerical methods for solving problems of heat transfer and fluid dynamics. Moscow: Energoatomizdat; 1984. (In Russ.)
  6. Loytsyansky LG. Mechanics of liquid and gas. Moscow: Nauka; 1987. (In Russ.)
  7. Volkov KN, Emelyanov VN. Modeling of large eddies in calculations of turbulent flows. Moscow: FIZMATLIT; 2008. (In Russ.)
  8. Wilcox DC. Turbulence Modeling for CFD. La Canada: DCW Industries, 1998.
  9. Menter F. Two Equation Eddy-Viscosity Turbulence Modeling for Engineering Applications. AIAA Journal. 1994. Vol. 32. P. 1598–1605. doi: 10.2514/3.12149
  10. Kondyurin AYu, Shcherba VE, Shalai VV, et al. Experimental Research Results of the Slot Seal Constructed as Hydrodiode for the Hybrid Power Piston Volumetric Machine. Procedia Engineering. 2016;152:197–204. doi: 10.1016/j.proeng.2016.07.691

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. The shape of the slot seal without additional elements (а), with concentric grooves (b) and with screw thread (c).

Download (95KB)
3. Fig. 2. The Tesla Hydrodiode.

Download (89KB)
4. Fig. 3. The mesh for the calculation in full setup.

Download (108KB)
5. Fig. 4. The calculation method using the sector.

Download (25KB)
6. Fig. 5. The mesh for the calculation of the sector.

Download (62KB)
7. Fig. 8. The geometry of the grooves.

Download (126KB)
8. Fig. 9. The sizes of the grooves of hydrodiode.

Download (75KB)
9. Fig. 10. The liquid model of the slot seal with annular grooves.

Download (29KB)
10. Fig. 11. The hydrodiode with increased groove sizes.

Download (86KB)
11. Fig. 12. The hydrodiode located on the rotor.

Download (38KB)
12. Fig. 13. The mesh of the hydrodiode.

Download (134KB)
13. Fig. 14. The mesh of the standard groove.

Download (144KB)
14. Fig. 15. The mesh of the enlarged hydrodiode.

Download (174KB)
15. Fig. 16. The mesh of the hydrodiode on the rotor.

Download (190KB)
16. Fig. 17. Vector velocity field of the hydrodiode (change of velocity from 0 m/s to 18,8 m/s).

Download (149KB)
17. Fig. 18. Vector velocity field in a standard groove (change of velocity from 0 m/s to 18,2 m/s).

Download (123KB)
18. Fig. 19. Vector velocity field of the enlarged hydrodiode (change of velocity from 0 m/s to 21,4 m/s).

Download (226KB)
19. Fig. 20. Vector velocity field of the hydrodiode on a rotor (change of velocity from 0 m/s to 22,1 m/s).

Download (198KB)
20. Fig. 6. Comparison of flow rate coefficients for the full calculation and the sector calculation.

Download (211KB)
21. Fig. 7. A liquid model of a slot seal in the shape of a hydrodiode.

Download (64KB)
22. Fig. 21. Comparison of different slot seal options.

Download (249KB)

Copyright (c) 2024 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).